A multitude of orders in the field $\mathbb{F}_{\infty}{ }^{*}$

Sebastián Troncoso ${ }^{\dagger}$
Facultad de Matemáticas
Pontificia Universidad Católica de Chile
sitronco@uc.cl

Abstract

The field \mathbb{F}_{∞} appeared in [2] in the construction of the first non-classical orthomodular space. It has a non-archimedean order. The purpose of this short paper is to show that it admits uncountable different orders, archimedean as well as non-archimedean.

1 Preliminaries

In all this paper \mathbb{Q} is the field of rational numbers, and \mathbb{R} the field of real numbers.
Definition. Following [2] we define the field \mathbb{F}_{∞} in a recursive way. Let X_{1}, X_{2}, \ldots be variables. Put
$F_{0}=\mathbb{Q}$
$F_{n}=F_{n-1}\left(X_{n}\right)$ para $n \geq 1$.
And $\mathbb{F}_{\infty}=\cup_{n=0}^{\infty} F_{n}$
H. Keller ordered this field by \leq_{0} as follows.
i) $F_{0}=\mathbb{Q}$ has its unique order, which is induced by the order of \mathbb{R}.
ii) Suppose the order \leq_{0} has been extended to F_{n-1}. We define now \leq_{0} in F_{n}.

Let $f, g \in F_{n-1}\left[X_{n}\right], f=a_{m} X_{n}^{m}+a_{m-1} X_{n}^{m-1}+\ldots+a_{0}$ with $a_{i} \in F_{n-1}$, then

$$
0 \leq_{0} f \Longleftrightarrow 0 \leq_{0} a_{m} \text { in } F_{n-1}
$$

$$
0 \leq_{0} \frac{f}{g} \Longleftrightarrow 0 \leq_{0} f g
$$

- Clearly this order \leq_{0} in F_{n} is an extension of the order \leq_{0} in F_{n-1}
iii) Hence $\left(F_{\infty}, \leq_{0}\right)$ is an ordered field.

[^0]That this is a non-archimedean order can easily be seen, since for $X_{1}, X_{1}^{2} \in \mathbb{F}$ and every $n \in \mathbb{N} n X_{1} \leq_{0} X_{1}^{2}$. Even more, we have that for all $n \in \mathbb{N}$ and $i, j, k, l \in \mathbb{N}$
a) $i>k \Rightarrow X_{i}^{j}>n X_{k}^{l}$
b) $i=k, j>l \Rightarrow X_{i}^{j}>n X_{k}^{l}$

We are interested in the following questions. Can this field be ordered in a non-finite number of ways? Is the same true if the orders are required to be non-archimedean?

We refer the reader to [1] for the general theory of Ordered Fields, and to [3] Ch. 19 for facts about Trascendental Extensions of Fields.

2 Non-archimedean extensions of archimedean orders in \mathbb{F}_{∞}

The main idea in the construction of the order \leq_{0} was to give F_{0} its usual order as a subfield of \mathbb{R}, and then define a non-archimedean extension of this order to F_{n} for every $n \in \mathbb{N}$. But this "cut" could well be done at a higher level, that is we can order the field F_{n} (via isomorphism) as a subfield of \mathbb{R} and then define our unconventional order from F_{n+1} on. According to this scheme we will define the order \leq_{j} for any fixed but arbitrary $j \in \mathbb{N}$ in the following way.
i) We have that $F_{j}=\mathbb{Q}\left(X_{1}, \ldots, X_{j}\right)$. Consider a fixed set $\left\{y_{n}\right\}_{1}^{j}$ of positive real numbers, algebraically independent over \mathbb{Q}. Then (see [3] 19.5) $F_{j} \cong \mathbb{Q}\left(y_{1}, \ldots, y_{j}\right) \subset \mathbb{R}$.
Therefore the order of \mathbb{R} induces an archimedean order \leq_{j} in the field F_{j} (and clearly in any F_{i} with $\left.0 \leq i<j\right)$.
ii) Assume that the order has been constructed up to F_{n-1} where $n-1 \geq j$. We define \leq_{j} in F_{n} in the following way.
Let $f \in F_{n-1}\left[X_{n}\right]$ and $f=a_{m} X_{n}^{m}+a_{m-1} X_{n}^{m-1}+\ldots+a_{0}$ with $a_{i} \in F_{n-1}$ and $g \in F_{n-1}\left[X_{n}\right]$
$0 \leq_{j} f \Longleftrightarrow 0 \leq_{j} a_{m}$ in F_{n-1}
$0 \leq_{j} \frac{f}{g} \Longleftrightarrow 0 \leq_{j} f g$

- Therefore \leq_{j} in F_{n} is an extension of the order \leq_{j} in F_{n-1}
iii) Then $\left(F_{\infty}, \leq_{j}\right)$ is a non-archimedeanly ordered field.

We shall now prove that \leq_{i} and \leq_{j} are different orders whenever $i \neq j$. Without loss of generality, assume that $j>i$ then there exists an $n \in \mathbb{Z}$ such that

$$
X_{j}^{2}+n \leq_{j} 0
$$

But $0 \leq_{i} X_{j}^{2}+m$ for all $m \in \mathbb{Z}$ in particular $0 \leq_{i} X_{j}^{2}+n$, therefore the positive cones of this orders are different, and \leq_{i} is not equal to \leq_{j}.
In this way we have constructed a countable family of different non-archimedean orders in \mathbb{F}_{∞}.

2.1 Archimedean orders in $\mathbb{Q}\left(X_{1}\right)$

We will explicitly show that $\mathbb{Q}\left(X_{1}\right)$ can be given an archimedean order in uncountable different ways.
Let a be number in \mathbb{R} transcendental over \mathbb{Q}, as it is well known

$$
\mathbb{Q}\left(X_{1}\right) \cong \mathbb{Q}(a) \subset \mathbb{R}
$$

The restriction of the order of \mathbb{R} is an archimedean order in $\mathbb{Q}(a)$. It induces an order $<_{a}$, in $\mathbb{Q}\left(X_{1}\right)$ by,

$$
\begin{gathered}
p\left(X_{1}\right) \geq 0 \text { in } \mathbb{Q}\left[X_{1}\right] \Leftrightarrow p(a) \geq 0 \text { in } \mathbb{R} \\
\frac{p\left(X_{1}\right)}{q\left(X_{1}\right)} \geq 0 \text { in } \mathbb{Q}\left[X_{1}\right] \Leftrightarrow p\left(X_{1}\right) q\left(X_{1}\right) \geq 0 \text { in } \mathbb{Q}\left[X_{1}\right]
\end{gathered}
$$

We notice that if $a \neq b$ are transcendental numbers in \mathbb{R}, then there exists a rational number r such that

$$
a<r<b \vee b<r<a
$$

Assume $a<r<b$, and consider $p\left(X_{1}\right)=X_{1}-r$
In $\mathbb{Q}(a)$

$$
a<r \Rightarrow a-r<0 \Rightarrow p\left(X_{1}\right)<_{a} 0
$$

In $\mathbb{Q}(b)$

$$
r<b \Rightarrow 0<b-r \Rightarrow 0<_{b} p\left(X_{1}\right)
$$

Therefore the positive cones of the orders \leq_{a} and \leq_{b} are different. This implies that

$$
\leq_{a} \neq \leq_{b}
$$

Hence we have constructed an uncountable family of archimedean orders in $\mathbb{Q}\left(X_{1}\right)$.

3 Back to \mathbb{F}_{∞}

We are now in the position to prove the existence of a non-countable family of nonarchimedean orders, as well as non-countable family of archimedean orders, in \mathbb{F}_{∞}.

3.1 Non-Archimedean orders

Let us put together the results of both subsections of the previous section. Each of the different orders of $F_{1}=Q\left(X_{1}\right)$ can be extended to an order \leq_{1} in \mathbb{F}_{∞}. Therefore we obtain an uncountable family of non-archimedean orders in \mathbb{F}_{∞}.

3.2 Archimedean orders

We show now that the collection of archimedean orders in \mathbb{F}_{∞} is also uncountable. Let $S \subset \mathbb{R}$ a transcendence basis for \mathbb{R} over \mathbb{Q}, we can assume that $S \subset \mathbb{R}^{+}$. Choose a sequence

$$
T=t_{1}<t_{2}<\ldots<t_{m}<\ldots
$$

of elements of S. For every $n \in \mathbb{N}$ the set $t_{1}, t_{2}, \ldots t_{n}$ is algebraically independent, thus there exists a field isomorphism $\varphi_{n}: F_{n}=\mathbb{Q}\left(X_{1}, X_{2}, \ldots X_{n}\right) \rightarrow \mathbb{Q}\left(t_{1}, t_{2}, \ldots t_{n}\right)$ with $\varphi_{n}\left(X_{i}\right)=t_{i}$ for $i=1 \ldots n$.
Let P_{n} be the positive cone of $\mathbb{Q}\left(t_{1}, t_{2}, \ldots t_{n}\right)$ as a subfield of (\mathbb{R}, \leq), then $\varphi_{n}^{-1}\left(P_{n}\right)$ is a positive cone of F_{n}. Hence \mathbb{F}_{∞} is ordered with positive cone

$$
\bigcup_{n \in \mathbb{N}} \varphi_{n}^{-1}\left(P_{n}\right) .
$$

This order, denoted by \leq_{T} is archimedean since it is induced by the archimedean order of a subfield of (\mathbb{R}, \leq).
Since S is a non-denumerable set, we can choose a non-denumerable family of sequences of elements of S, each one ordered as in the previous paragraph, whose first elements are all different. Each one induces an archimedean order in \mathbb{F}_{∞} and we contend that those orders are all different.

The proof goes along the same lines as in the case of $\mathbb{Q}(x)$.
Let $T=t_{1}, t_{2}, \ldots$ and $Z=z_{1}, z_{2}, \ldots$ be two sequences as above. We can assume, without loss of generality, that $t_{1}<z_{1}$. Let r be a rational number such that $t_{1}<r<z_{1}$
Consider $p\left(x_{1}\right)=x_{1}-r$
In $\mathbb{Q}(T)$

$$
t_{1}<r \Rightarrow t_{1}-r<0 \text {. Therefore } p\left(x_{1}\right)<_{T} 0
$$

In $\mathbb{Q}(Z)$

$$
r<z_{1} \Rightarrow 0<z_{1}-r \text {. Therefore } 0<_{Z} p\left(x_{1}\right)
$$

Hence the positive cone of the order \leq_{T} is different from the positive cone of the order induced by \leq_{Z}. Therefore we have constructed an uncountable family of archimedean orders in \mathbb{F}_{∞}.
Remark. Clearly this procedure implies that for any $j \in \mathbb{N}$, the field F_{j} also admits uncountable different archimedean orders. And any of these can be extended to a nonarchimedean order \leq_{j} as in subsection 2.1.

Hence there are really a multitude of different orders of the field \mathbb{F}_{∞}.

References

[1] Jacobson J. Basic Algebra II. Freeman and Company, San Francisco, 1989.
[2] Keller, H. Ein nicht-klassischer Hilbertscher Raum. Math. Z. 172 (1980), 41-49.
[3] Morandi, P. Field and Galois Theory. Springer, New York, 1996.

[^0]: *AMS clasification. Primary 12J15; Secondary 12F20. Keywords: Ordered fields, Non archimedean orders
 ${ }^{\dagger}$ Partially supported by Fondecyt 1080194

