A multitude of orders in the field \mathbb{F}_{∞}^*

Sebastián Troncoso[†] Facultad de Matemáticas Pontificia Universidad Católica de Chile sitronco@uc.cl

Abstract

The field \mathbb{F}_{∞} appeared in [2] in the construction of the first non-classical orthomodular space. It has a non-archimedean order. The purpose of this short paper is to show that it admits uncountable different orders, archimedean as well as non-archimedean.

1 Preliminaries

In all this paper \mathbb{Q} is the field of rational numbers, and \mathbb{R} the field of real numbers.

Definition. Following [2] we define the field \mathbb{F}_{∞} in a recursive way. Let X_1, X_2, \ldots be variables. Put

 $F_0 = \mathbb{Q}$ $F_n = F_{n-1}(X_n) \text{ para } n \ge 1.$ And $\mathbb{F}_{\infty} = \bigcup_{n=0}^{\infty} F_n$

H. Keller ordered this field by \leq_0 as follows.

- i) $F_0 = \mathbb{Q}$ has its unique order, which is induced by the order of \mathbb{R} .
- ii) Suppose the order \leq_0 has been extended to F_{n-1} . We define now \leq_0 in F_n . Let $f, g \in F_{n-1}[X_n], f = a_m X_n^m + a_{m-1} X_n^{m-1} + \dots + a_0$ with $a_i \in F_{n-1}$, then $0 \leq_0 f \iff 0 \leq_0 a_m$ in F_{n-1}

 $0 \leq_0 \frac{f}{g} \Longleftrightarrow 0 \leq_0 fg$

• Clearly this order \leq_0 in F_n is an extension of the order \leq_0 in F_{n-1}

iii) Hence (F_{∞}, \leq_0) is an ordered field.

^{*}AMS clasification. Primary 12J15; Secondary 12F20. Keywords: Ordered fields, Non archimedean orders

[†]Partially supported by Fondecyt 1080194

That this is a non-archimedean order can easily be seen, since for $X_1, X_1^2 \in \mathbb{F}$ and every $n \in \mathbb{N}$ $nX_1 \leq_0 X_1^2$. Even more, we have that for all $n \in \mathbb{N}$ and $i, j, k, l \in \mathbb{N}$

a) $i > k \Rightarrow X_i^j > nX_k^l$

b)
$$i = k, j > l \Rightarrow X_i^j > nX_k^l$$

We are interested in the following questions. Can this field be ordered in a non-finite number of ways? Is the same true if the orders are required to be non-archimedean?

We refer the reader to [1] for the general theory of Ordered Fields, and to [3] Ch. 19 for facts about Trascendental Extensions of Fields.

2 Non-archimedean extensions of archimedean orders in \mathbb{F}_{∞}

The main idea in the construction of the order \leq_0 was to give F_0 its usual order as a subfield of \mathbb{R} , and then define a non-archimedean extension of this order to F_n for every $n \in \mathbb{N}$. But this "cut" could well be done at a higher level, that is we can order the field F_n (via isomorphism) as a subfield of \mathbb{R} and then define our unconventional order from F_{n+1} on. According to this scheme we will define the order \leq_j for any fixed but arbitrary $j \in \mathbb{N}$ in the following way.

- i) We have that $F_j = \mathbb{Q}(X_1, ..., X_j)$. Consider a fixed set $\{y_n\}_1^j$ of positive real numbers, algebraically independent over \mathbb{Q} . Then (see [3] 19.5) $F_j \cong \mathbb{Q}(y_1, ..., y_j) \subset \mathbb{R}$. Therefore the order of \mathbb{R} induces an archimedean order \leq_j in the field F_j (and clearly in any F_i with $0 \leq i < j$).
- ii) Assume that the order has been constructed up to F_{n-1} where $n-1 \ge j$. We define \le_j in F_n in the following way.

Let $f \in F_{n-1}[X_n]$ and $f = a_m X_n^m + a_{m-1} X_n^{m-1} + ... + a_0$ with $a_i \in F_{n-1}$ and $g \in F_{n-1}[X_n]$

$$0 \leq_j f \iff 0 \leq_j a_m \text{ in } F_{n-1}$$
$$0 \leq_j \frac{f}{q} \iff 0 \leq_j fg$$

- Therefore \leq_j in F_n is an extension of the order \leq_j in F_{n-1}
- iii) Then (F_{∞}, \leq_i) is a non-archimedeanly ordered field.

We shall now prove that \leq_i and \leq_j are different orders whenever $i \neq j$. Without loss of generality, assume that j > i then there exists an $n \in \mathbb{Z}$ such that

$$X_j^2 + n \leq_j 0.$$

But $0 \leq_i X_j^2 + m$ for all $m \in \mathbb{Z}$ in particular $0 \leq_i X_j^2 + n$, therefore the positive cones of this orders are different, and \leq_i is not equal to \leq_j .

In this way we have constructed a countable family of different non-archimedean orders in \mathbb{F}_{∞} .

2.1 Archimedean orders in $\mathbb{Q}(X_1)$

We will explicitly show that $\mathbb{Q}(X_1)$ can be given an archimedean order in uncountable different ways.

Let a be number in \mathbb{R} transcendental over \mathbb{Q} , as it is well known

$$\mathbb{Q}(X_1) \cong \mathbb{Q}(a) \subset \mathbb{R}$$

The restriction of the order of \mathbb{R} is an archimedean order in $\mathbb{Q}(a)$. It induces an order $<_a$, in $\mathbb{Q}(X_1)$ by,

$$p(X_1) \ge 0 \text{ in } \mathbb{Q}[X_1] \Leftrightarrow p(a) \ge 0 \text{ in } \mathbb{R}$$

 $\frac{p(X_1)}{q(X_1)} \ge 0 \text{ in } \mathbb{Q}[X_1] \Leftrightarrow p(X_1)q(X_1) \ge 0 \text{ in } \mathbb{Q}[X_1]$

We notice that if $a \neq b$ are transcendental numbers in \mathbb{R} , then there exists a rational number r such that

$$a < r < b \lor b < r < a$$

Assume a < r < b, and consider $p(X_1) = X_1 - r$

In $\mathbb{Q}(a)$

 $a < r \Rightarrow a - r < 0 \Rightarrow p(X_1) <_a 0$

In $\mathbb{Q}(b)$

$$r < b \Rightarrow 0 < b - r \Rightarrow 0 <_b p(X_1)$$

Therefore the positive cones of the orders \leq_a and \leq_b are different. This implies that

 $\leq_a \neq \leq_b$.

Hence we have constructed an uncountable family of archimedean orders in $\mathbb{Q}(X_1)$.

3 Back to \mathbb{F}_{∞}

We are now in the position to prove the existence of a non-countable family of nonarchimedean orders, as well as non-countable family of archimedean orders, in \mathbb{F}_{∞} .

3.1 Non-Archimedean orders

Let us put together the results of both subsections of the previous section. Each of the different orders of $F_1 = Q(X_1)$ can be extended to an order \leq_1 in \mathbb{F}_{∞} . Therefore we obtain an uncountable family of non-archimedean orders in \mathbb{F}_{∞} .

3.2 Archimedean orders

We show now that the collection of archimedean orders in \mathbb{F}_{∞} is also uncountable. Let $S \subset \mathbb{R}$ a transcendence basis for \mathbb{R} over \mathbb{Q} , we can assume that $S \subset \mathbb{R}^+$. Choose a sequence

$$T = t_1 < t_2 < \ldots < t_m < \ldots$$

of elements of S. For every $n \in \mathbb{N}$ the set t_1, t_2, \ldots, t_n is algebraically independent, thus there exists a field isomorphism $\varphi_n : F_n = \mathbb{Q}(X_1, X_2, \ldots, X_n) \to \mathbb{Q}(t_1, t_2, \ldots, t_n)$ with $\varphi_n(X_i) = t_i$ for $i = 1 \ldots n$.

Let P_n be the positive cone of $\mathbb{Q}(t_1, t_2, \dots, t_n)$ as a subfield of (\mathbb{R}, \leq) , then $\varphi_n^{-1}(P_n)$ is a positive cone of F_n . Hence \mathbb{F}_{∞} is ordered with positive cone

$$\bigcup_{n\in\mathbb{N}}\varphi_n^{-1}(P_n)$$

This order, denoted by \leq_T is archimedean since it is induced by the archimedean order of a subfield of (\mathbb{R}, \leq) .

Since S is a non-denumerable set, we can choose a non-denumerable family of sequences of elements of S, each one ordered as in the previous paragraph, whose first elements are all different. Each one induces an archimedean order in \mathbb{F}_{∞} and we contend that those orders are all different.

The proof goes along the same lines as in the case of $\mathbb{Q}(x)$.

Let $T = t_1, t_2, ...$ and $Z = z_1, z_2, ...$ be two sequences as above. We can assume, without loss of generality, that $t_1 < z_1$. Let r be a rational number such that $t_1 < r < z_1$ Consider $p(x_1) = x_1 - r$

In $\mathbb{Q}(T)$

 $t_1 < r \Rightarrow t_1 - r < 0$. Therefore $p(x_1) <_T 0$

In $\mathbb{Q}(Z)$

 $r < z_1 \Rightarrow 0 < z_1 - r$. Therefore $0 <_Z p(x_1)$

Hence the positive cone of the order \leq_T is different from the positive cone of the order induced by \leq_Z . Therefore we have constructed an uncountable family of archimedean orders in \mathbb{F}_{∞} .

Remark. Clearly this procedure implies that for any $j \in \mathbb{N}$, the field F_j also admits uncountable different archimedean orders. And any of these can be extended to a non-archimedean order \leq_j as in subsection 2.1.

Hence there are really a multitude of different orders of the field \mathbb{F}_{∞} .

References

- [1] Jacobson J. Basic Algebra II. Freeman and Company, San Francisco, 1989.
- [2] Keller, H. Ein nicht-klassischer Hilbertscher Raum. Math. Z. 172 (1980), 41-49.
- [3] Morandi, P. Field and Galois Theory. Springer, New York, 1996.