We have seen several number systems:
NcCcZc QCR,

where the latter is an extension of the former, and Q, R are fields.
We may do another extension to R, and get the set of complex numbers:

RcC.
For this extension, we introduce an element ¢, which satisfies
i2 = —1.

Since for every x € R, 22 > 0, the i can not be a real number. The set C is then the collection
of
T + 1y,

where = and y are both real numbers, called the real part and imaginary part:
r =Re(z +1y), y=Im(x+iy).

We know every real number corresponds to a point on a line. Every complex number z =
x + iy € C then corresponds to a point (z,y) in the plane. We understand R as a subset of C
by

=z +10.

So R corresponds to the points on the z-axis. We can do addition and subtraction on complex
numbers. The addition formula and subtraction formula are

(x1 4+ 1y1) + (22 +iy2) = (x1 + 22) + (1 + v2),

(1 +iy1) — (z2 +iy2) = (21 — 22) +i(y1 — ¥2).

This means that we operate on the real parts and the imaginary parts respectively. The
multiplication formula is

(x1 +iy1) - (22 +iy2) = (v122 — Y1y2) +i(z1Y2 + Yy122).

We can derive this formula using 2> = —1. We have the commutative law, associative law, and
distributive law. Then 1 =1+ 40 and 0 = 0 + 40 satisfy 0+ z = z and 1 - 2z for all z € C. The
quotient formula is a little bit complicated. For x + iy # 0 + 04, its reciprocal is

z -y

x+iy) Tt = +1 .
( y) 242 21yl

It is straightforward to check that (x + iy)(z + iy)~' = 1. Then z/w for z,w € C with w # 0
is defined as zw™!. The set C with these operations is a field.



For z = x + iy € C, we define its absolute value
= Va2

which is the Euclidean distance from the point (z,y) from (0,0). For z,w € C, |z — w| is the
distance between z and w. For zp € C and r > 0, we call D(zg,r) defined as {z € C : |[z—z| < r}
an open disc. It is the set of all points in the plane with distance less than r from z3. The set
D(z0,7) \ {20} is then called a punctured disc. We say that a sequence of complex numbers
(zp) converge to a complex number zg if |z, — 29| — 0. This is equivalent to that Re z, — Re 2
and Im z, — Im zy. A subset U of C is called open if for every zg € U, there is r > 0 such that
D(zp,7) C U.
For L € C and a function f defined on D(zp,7) \ {20} taking values in C, we write

lim f(z) =1L,

Z—r20
if for any sequence (z,) in D(zg,7) \ {20} with z, — z, we have f(z,) — L. If in addition, f is
also defined at zp and lim,_,,, f(z) = f(20), then we say that f is continuous at zg. Suppose f
is defined on D(zp, ), and there is L € C such that

i F2) = £z0)

Z—20 zZ— 20

=L

Then we say that f is (complex) differentiable at zp, and write d% f(20) or f'(2p) for the complex
derivative L. If f is defined on an open set U, and is differentiable at every z € U, then we say
that f is differentiable on U.

We also have sum rule, product rule, quotient rule, and chain rule for derivatives, i.e.,

fv_fa—1td

(af +bg) =af +bg', (f9) = f'g+fd, (g)’ Z (go ) =4d(NHf"

It is straightforward to check that d%z = 1. We define 2" = z--- z. Using the product rule and
<~

n

0

induction, we find that d%z" = nz""! for all n € N. Here 2" is constant 1.

For a sequence (a,)5’, in C, the series

x
E anz"
n=0

is called a power series centered at 0. Let
1

- lim sup |a, /™

If R = 0, the series converges only at 0; if R = oo, the series converges at every z € C; if
0 < R < o0, the series converges at every z € D(0, R) and diverges at every z € C with |z| > R.



Suppose R > 0, and we let f denote the sum of the series in D(0, R). It turns out that f is
complex differentiable, and

f(z) = Znanzn_l, z € D(zp, R).
n=1

Since f’ is also a sum of a power series with positive radius, we may further differentiate f’
and then f” and so on. So f is infinitely many times complex differentiable. The coefficients
a, then satisfy

/™ (0)

n!

Ay = , n=0,1,2,....

A function f defined on an open set U is called analytic if for every zg € U, there exist r > 0
and ag, ay,az,- -+ € C such that D(zp,7) C U, and

f(z) = Zan(z —20)", z€ D(zg,r).
n=0

Then an analytic function must be infinitely times differentiable. A remarkable fact is that
if f is once complex differentiable on U, then it must be analytic on U, and so is infinitely
times differentiable. This is not true for real differentiable functions. We know that for a real
differentiable function f on R, the derivative function f’ may not even be continuous.

Here are a few important examples of analytic functions. For ag,...,a, € C, the function
P(z) = >, a2 is called a complex polynomial. This expression is just a power series
centered at 0. Its derivative is ), kayz"~', which is is still a polynomial. Another example
is the complex exponential function. We define for « + iy € C,

exp(z 4 iy) = ¥ = % cosy + ie® siny.

Note when y = 0, e*T = ¢?. So it extends the real exponential function. On can also compute

directly that e*1e*2 = e*1*%2 for any 21,29 € C. It is analytic on C with the power series:
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Unlike the real exponential function, the complex exponential function is not injective because
e*12™ — ¢% for any z € C. The logarithm function log z is defined as the inverse of ¢, which is
multi-valued. The complex trigonometric functions cos z and sin z are defined using e® by

e’LZ + e*ZZ . elZ _ 6722:
cosz = ——, sing=———
21

2
They are both analytic on C. The power series expansions are

(0.)
(_1)n22n 22 2,4 26
= -7 =1 - — - cee G(C;
o8E nzo (2n)! 2 "W T " ®



o
) _ (_1)nz2n+1 - 2,3 25 Z7
s1nz_nzow_z_3!+5!_ﬂ+..., 2e

The remarkable Fundamental Theorem of Algebra states that, for any nonconstant
complex polynomial P, the equation P(z) = 0 has at least one complex solution. This statement
is not true for real numbers. For example, the equation 22 + 1 = 0 has no real solution. This
is one of the reasons why complex numbers are important.



