
We have seen several number systems:

N ⊂ Z ⊂ Q ⊂ R,

where the latter is an extension of the former, and Q,R are fields.
We may do another extension to R, and get the set of complex numbers:

R ⊂ C.

For this extension, we introduce an element i, which satisfies

i2 = −1.

Since for every x ∈ R, x2 ≥ 0, the i can not be a real number. The set C is then the collection
of

x + iy,

where x and y are both real numbers, called the real part and imaginary part:

x = Re(x + iy), y = Im(x + iy).

We know every real number corresponds to a point on a line. Every complex number z =
x + iy ∈ C then corresponds to a point (x, y) in the plane. We understand R as a subset of C
by

x = x + i0.

So R corresponds to the points on the x-axis. We can do addition and subtraction on complex
numbers. The addition formula and subtraction formula are

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2),

(x1 + iy1)− (x2 + iy2) = (x1 − x2) + i(y1 − y2).

This means that we operate on the real parts and the imaginary parts respectively. The
multiplication formula is

(x1 + iy1) · (x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + y1x2).

We can derive this formula using i2 = −1. We have the commutative law, associative law, and
distributive law. Then 1 = 1 + i0 and 0 = 0 + i0 satisfy 0 + z = z and 1 · z for all z ∈ C. The
quotient formula is a little bit complicated. For x + iy 6= 0 + 0i, its reciprocal is

(x + iy)−1 =
x

x2 + y2
+ i

−y
x2 + y2

.

It is straightforward to check that (x + iy)(x + iy)−1 = 1. Then z/w for z, w ∈ C with w 6= 0
is defined as zw−1. The set C with these operations is a field.
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For z = x + iy ∈ C, we define its absolute value

|z| =
√

x2 + y2,

which is the Euclidean distance from the point (x, y) from (0, 0). For z, w ∈ C, |z − w| is the
distance between z and w. For z0 ∈ C and r > 0, we call D(z0, r) defined as {z ∈ C : |z−z0| < r}
an open disc. It is the set of all points in the plane with distance less than r from z0. The set
D(z0, r) \ {z0} is then called a punctured disc. We say that a sequence of complex numbers
(zn) converge to a complex number z0 if |zn− z0| → 0. This is equivalent to that Re zn → Re z0
and Im zn → Im z0. A subset U of C is called open if for every z0 ∈ U , there is r > 0 such that
D(z0, r) ⊂ U .

For L ∈ C and a function f defined on D(z0, r) \ {z0} taking values in C, we write

lim
z→z0

f(z) = L,

if for any sequence (zn) in D(z0, r) \ {z0} with zn → z, we have f(zn)→ L. If in addition, f is
also defined at z0 and limz→z0 f(z) = f(z0), then we say that f is continuous at z0. Suppose f
is defined on D(z0, r), and there is L ∈ C such that

lim
z→z0

f(z)− f(z0)

z − z0
= L.

Then we say that f is (complex) differentiable at z0, and write d
dzf(z0) or f ′(z0) for the complex

derivative L. If f is defined on an open set U , and is differentiable at every z ∈ U , then we say
that f is differentiable on U .

We also have sum rule, product rule, quotient rule, and chain rule for derivatives, i.e.,

(af + bg)′ = af ′ + bg′, (fg)′ = f ′g + fg′, (
f

g
)′ =

f ′g − fg′

g2
, (g ◦ f)′ = g′(f)f ′.

It is straightforward to check that d
dz z = 1. We define zn = z · · · z︸ ︷︷ ︸

n

. Using the product rule and

induction, we find that d
dz z

n = nzn−1 for all n ∈ N. Here z0 is constant 1.
For a sequence (an)∞n=0 in C, the series

∞∑
n=0

anz
n

is called a power series centered at 0. Let

R =
1

lim sup |an|1/n
.

If R = 0, the series converges only at 0; if R = ∞, the series converges at every z ∈ C; if
0 < R <∞, the series converges at every z ∈ D(0, R) and diverges at every z ∈ C with |z| > R.
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Suppose R > 0, and we let f denote the sum of the series in D(0, R). It turns out that f is
complex differentiable, and

f ′(z) =
∞∑
n=1

nanz
n−1, z ∈ D(z0, R).

Since f ′ is also a sum of a power series with positive radius, we may further differentiate f ′

and then f ′′ and so on. So f is infinitely many times complex differentiable. The coefficients
an then satisfy

an =
f (n)(0)

n!
, n = 0, 1, 2, . . . .

A function f defined on an open set U is called analytic if for every z0 ∈ U , there exist r > 0
and a0, a1, a2, · · · ∈ C such that D(z0, r) ⊂ U , and

f(z) =
∞∑
n=0

an(z − z0)
n, z ∈ D(z0, r).

Then an analytic function must be infinitely times differentiable. A remarkable fact is that
if f is once complex differentiable on U , then it must be analytic on U , and so is infinitely
times differentiable. This is not true for real differentiable functions. We know that for a real
differentiable function f on R, the derivative function f ′ may not even be continuous.

Here are a few important examples of analytic functions. For a0, . . . , an ∈ C, the function
P (z) =

∑n
k=0 akz

k is called a complex polynomial. This expression is just a power series
centered at 0. Its derivative is

∑n
k=1 kakz

k−1, which is is still a polynomial. Another example
is the complex exponential function. We define for x + iy ∈ C,

exp(x + iy) = ex+iy = ex cos y + iex sin y.

Note when y = 0, ex+i0 = ex. So it extends the real exponential function. On can also compute
directly that ez1ez2 = ez1+z2 for any z1, z2 ∈ C. It is analytic on C with the power series:

ez =

∞∑
n=0

zn

n!
= 1 + z +

z2

2
+

z3

3!
+

z4

4!
+ · · · , z ∈ C.

Unlike the real exponential function, the complex exponential function is not injective because
ez+i2π = ez for any z ∈ C. The logarithm function log z is defined as the inverse of ez, which is
multi-valued. The complex trigonometric functions cos z and sin z are defined using ez by

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
.

They are both analytic on C. The power series expansions are

cos z =
∞∑
n=0

(−1)nz2n

(2n)!
= 1− z2

2
+

z4

4!
− z6

6!
+ · · · , z ∈ C;
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sin z =
∞∑
n=0

(−1)nz2n+1

(2n + 1)!
= z − z3

3!
+

z5

5!
− z7

7!
+ · · · , z ∈ C.

The remarkable Fundamental Theorem of Algebra states that, for any nonconstant
complex polynomial P , the equation P (z) = 0 has at least one complex solution. This statement
is not true for real numbers. For example, the equation x2 + 1 = 0 has no real solution. This
is one of the reasons why complex numbers are important.
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