We have seen several number systems:

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R},
$$

where the latter is an extension of the former, and \mathbb{Q}, \mathbb{R} are fields.
We may do another extension to \mathbb{R}, and get the set of complex numbers:

$$
\mathbb{R} \subset \mathbb{C}
$$

For this extension, we introduce an element i, which satisfies

$$
i^{2}=-1
$$

Since for every $x \in \mathbb{R}, x^{2} \geq 0$, the i can not be a real number. The set \mathbb{C} is then the collection of

$$
x+i y
$$

where x and y are both real numbers, called the real part and imaginary part:

$$
x=\operatorname{Re}(x+i y), \quad y=\operatorname{Im}(x+i y) .
$$

We know every real number corresponds to a point on a line. Every complex number $z=$ $x+i y \in \mathbb{C}$ then corresponds to a point (x, y) in the plane. We understand \mathbb{R} as a subset of \mathbb{C} by

$$
x=x+i 0 .
$$

So \mathbb{R} corresponds to the points on the x-axis. We can do addition and subtraction on complex numbers. The addition formula and subtraction formula are

$$
\begin{aligned}
& \left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{2}\right)=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right), \\
& \left(x_{1}+i y_{1}\right)-\left(x_{2}+i y_{2}\right)=\left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right) .
\end{aligned}
$$

This means that we operate on the real parts and the imaginary parts respectively. The multiplication formula is

$$
\left(x_{1}+i y_{1}\right) \cdot\left(x_{2}+i y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+y_{1} x_{2}\right) .
$$

We can derive this formula using $i^{2}=-1$. We have the commutative law, associative law, and distributive law. Then $1=1+i 0$ and $0=0+i 0$ satisfy $0+z=z$ and $1 \cdot z$ for all $z \in \mathbb{C}$. The quotient formula is a little bit complicated. For $x+i y \neq 0+0 i$, its reciprocal is

$$
(x+i y)^{-1}=\frac{x}{x^{2}+y^{2}}+i \frac{-y}{x^{2}+y^{2}} .
$$

It is straightforward to check that $(x+i y)(x+i y)^{-1}=1$. Then z / w for $z, w \in \mathbb{C}$ with $w \neq 0$ is defined as $z w^{-1}$. The set \mathbb{C} with these operations is a field.

For $z=x+i y \in \mathbb{C}$, we define its absolute value

$$
|z|=\sqrt{x^{2}+y^{2}}
$$

which is the Euclidean distance from the point (x, y) from $(0,0)$. For $z, w \in \mathbb{C},|z-w|$ is the distance between z and w. For $z_{0} \in \mathbb{C}$ and $r>0$, we call $D\left(z_{0}, r\right)$ defined as $\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}$ an open disc. It is the set of all points in the plane with distance less than r from z_{0}. The set $D\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}$ is then called a punctured disc. We say that a sequence of complex numbers $\left(z_{n}\right)$ converge to a complex number z_{0} if $\left|z_{n}-z_{0}\right| \rightarrow 0$. This is equivalent to that $\operatorname{Re} z_{n} \rightarrow \operatorname{Re} z_{0}$ and $\operatorname{Im} z_{n} \rightarrow \operatorname{Im} z_{0}$. A subset U of \mathbb{C} is called open if for every $z_{0} \in U$, there is $r>0$ such that $D\left(z_{0}, r\right) \subset U$.

For $L \in \mathbb{C}$ and a function f defined on $D\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}$ taking values in \mathbb{C}, we write

$$
\lim _{z \rightarrow z_{0}} f(z)=L,
$$

if for any sequence $\left(z_{n}\right)$ in $D\left(z_{0}, r\right) \backslash\left\{z_{0}\right\}$ with $z_{n} \rightarrow z$, we have $f\left(z_{n}\right) \rightarrow L$. If in addition, f is also defined at z_{0} and $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$, then we say that f is continuous at z_{0}. Suppose f is defined on $D\left(z_{0}, r\right)$, and there is $L \in \mathbb{C}$ such that

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=L
$$

Then we say that f is (complex) differentiable at z_{0}, and write $\frac{d}{d z} f\left(z_{0}\right)$ or $f^{\prime}\left(z_{0}\right)$ for the complex derivative L. If f is defined on an open set U, and is differentiable at every $z \in U$, then we say that f is differentiable on U.

We also have sum rule, product rule, quotient rule, and chain rule for derivatives, i.e.,

$$
(a f+b g)^{\prime}=a f^{\prime}+b g^{\prime}, \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}, \quad\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}, \quad(g \circ f)^{\prime}=g^{\prime}(f) f^{\prime}
$$

It is straightforward to check that $\frac{d}{d z} z=1$. We define $z^{n}=\underbrace{z \cdots z}_{n}$. Using the product rule and induction, we find that $\frac{d}{d z} z^{n}=n z^{n-1}$ for all $n \in \mathbb{N}$. Here z^{0} is constant 1 .

For a sequence $\left(a_{n}\right)_{n=0}^{\infty}$ in \mathbb{C}, the series

$$
\sum_{n=0}^{\infty} a_{n} z^{n}
$$

is called a power series centered at 0 . Let

$$
R=\frac{1}{\limsup \left|a_{n}\right|^{1 / n}}
$$

If $R=0$, the series converges only at 0 ; if $R=\infty$, the series converges at every $z \in \mathbb{C}$; if $0<R<\infty$, the series converges at every $z \in D(0, R)$ and diverges at every $z \in \mathbb{C}$ with $|z|>R$.

Suppose $R>0$, and we let f denote the sum of the series in $D(0, R)$. It turns out that f is complex differentiable, and

$$
f^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n} z^{n-1}, \quad z \in D\left(z_{0}, R\right)
$$

Since f^{\prime} is also a sum of a power series with positive radius, we may further differentiate f^{\prime} and then $f^{\prime \prime}$ and so on. So f is infinitely many times complex differentiable. The coefficients a_{n} then satisfy

$$
a_{n}=\frac{f^{(n)}(0)}{n!}, \quad n=0,1,2, \ldots
$$

A function f defined on an open set U is called analytic if for every $z_{0} \in U$, there exist $r>0$ and $a_{0}, a_{1}, a_{2}, \cdots \in \mathbb{C}$ such that $D\left(z_{0}, r\right) \subset U$, and

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad z \in D\left(z_{0}, r\right) .
$$

Then an analytic function must be infinitely times differentiable. A remarkable fact is that if f is once complex differentiable on U, then it must be analytic on U, and so is infinitely times differentiable. This is not true for real differentiable functions. We know that for a real differentiable function f on \mathbb{R}, the derivative function f^{\prime} may not even be continuous.

Here are a few important examples of analytic functions. For $a_{0}, \ldots, a_{n} \in \mathbb{C}$, the function $P(z)=\sum_{k=0}^{n} a_{k} z^{k}$ is called a complex polynomial. This expression is just a power series centered at 0 . Its derivative is $\sum_{k=1}^{n} k a_{k} z^{k-1}$, which is is still a polynomial. Another example is the complex exponential function. We define for $x+i y \in \mathbb{C}$,

$$
\exp (x+i y)=e^{x+i y}=e^{x} \cos y+i e^{x} \sin y
$$

Note when $y=0, e^{x+i 0}=e^{x}$. So it extends the real exponential function. On can also compute directly that $e^{z_{1}} e^{z_{2}}=e^{z_{1}+z_{2}}$ for any $z_{1}, z_{2} \in \mathbb{C}$. It is analytic on \mathbb{C} with the power series:

$$
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}=1+z+\frac{z^{2}}{2}+\frac{z^{3}}{3!}+\frac{z^{4}}{4!}+\cdots, \quad z \in \mathbb{C} .
$$

Unlike the real exponential function, the complex exponential function is not injective because $e^{z+i 2 \pi}=e^{z}$ for any $z \in \mathbb{C}$. The logarithm function $\log z$ is defined as the inverse of e^{z}, which is multi-valued. The complex trigonometric functions $\cos z$ and $\sin z$ are defined using e^{z} by

$$
\cos z=\frac{e^{i z}+e^{-i z}}{2}, \quad \sin z=\frac{e^{i z}-e^{-i z}}{2 i}
$$

They are both analytic on \mathbb{C}. The power series expansions are

$$
\cos z=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n}}{(2 n)!}=1-\frac{z^{2}}{2}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\cdots, \quad z \in \mathbb{C}
$$

$$
\sin z=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1}}{(2 n+1)!}=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots, \quad z \in \mathbb{C}
$$

The remarkable Fundamental Theorem of Algebra states that, for any nonconstant complex polynomial P, the equation $P(z)=0$ has at least one complex solution. This statement is not true for real numbers. For example, the equation $x^{2}+1=0$ has no real solution. This is one of the reasons why complex numbers are important.

