## Homework 10 Solutions

23.1 For each of the following power series, find the radius of convergence and determine the exact interval of convergence. (a) $\sum n^{2} x^{n}$; (c) $\sum\left(\frac{2^{n}}{n^{2}}\right) x^{n}$; (e) $\sum\left(\frac{2^{n}}{n!}\right) x^{n}$; (g) $\sum\left(\frac{3^{n}}{n \cdot 4^{n}}\right) x^{n}$.

Solution. (a) Here $a_{n}=n^{2}$. So $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)^{2}}{n^{2}}=\left(1+\frac{1}{n}\right)^{2} \rightarrow 1$. Thus, $\beta=1$ and the radius $R=1 / \beta=1$. It remains to check the convergence at $x=1$ and $x=-1$. Since for $x=1$ or $-1,\left|n^{2} x^{n}\right|=n^{2} \rightarrow \infty$, we do not have $n^{2} x^{n} \rightarrow 0$. So $\sum n^{2} x^{n}$ diverges if $x=1$ or -1 . Thus, the interval of convergence $I$ is $(-1,1)$.
(c) Here $a_{n}=\frac{2^{n}}{n^{2}}$. So $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\left.2^{n+1} / n+1\right)^{2}}{2^{n} / n^{2}}=\frac{2^{n+1} n^{2}}{2^{n}(n+1)^{2}}=\frac{2}{(1+1 / n)^{2}} \rightarrow 2$. Thus, $\beta=2$ and $R=1 / 2$. It remains to check the convergence at $x=1 / 2$ and $x=-1 / 2$. Since when $|x|=1 / 2,\left|\left(\frac{2^{n}}{n^{2}}\right) x^{n}\right|=\frac{1}{n^{2}}$, and $\sum \frac{1}{n^{2}}$ converges, by comparison test, $\sum\left(\frac{2^{n}}{n^{2}}\right) x^{n}$ converges at $x=1 / 2$ and $x=-1 / 2$. Thus, $I=[-1 / 2,1 / 2]$.
(e) Here $a_{n}=\frac{2^{n}}{n!}$. So $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{2^{n+1} /(n+1)!}{2^{n} / n!}=\frac{2^{n+1} n!}{2^{n}(n+1)!}=\frac{2}{n+1} \rightarrow 0$. Thus, $\beta=0$ and $R=\infty$. Then we have $I=\mathbb{R}$.
(g) Here $a_{n}=\frac{3^{n}}{n \cdot 4^{n}}$. So $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(3 / 4)^{n+1} /(n+1)}{(3 / 4)^{n} / n}=\frac{3 / 4 n}{n+1}=\frac{3 / 4}{1+1 / n} \rightarrow \frac{3}{4}$. Thus, $\beta=3 / 4$ and $R=4 / 3$. It remains to check the convergence at $x=4 / 3$ and $x=-4 / 3$. When $x=4 / 3$, the series becomes $\sum \frac{1}{n}$, which diverges. When $x=-4 / 3$, the series becomes $\sum \frac{(-1)^{n}}{n}$, which converges by alternative series test. So $I=[-4 / 3,4 / 3)$.
23.4 For $n=0,1,2,3, \ldots$, let $a_{n}=\left[\frac{4+2(-1)^{n}}{5}\right]^{n}$.
(a) Find $\lim \sup \left|a_{n}\right|^{1 / n}, \lim \inf \left|a_{n}\right|^{1 / n}, \lim \sup \left|\frac{a_{n+1}}{a_{n}}\right|$ and $\lim \inf \left|\frac{a_{n+1}}{a_{n}}\right|$.
(b) Do the series $\sum a_{n}$ and $\sum(-1)^{n} a_{n}$ converge? Explain briefly.
(c) Now consider the power series $\sum a_{n} x^{n}$ with the coefficients $a_{n}$ as above. Find the radius of convergence and determine the exact interval of convergence for the series.

Solution. (a) We have $\left|a_{n}\right|^{1 / n}=\frac{4+2(-1)^{n}}{5}=\frac{6}{5}$ if $n$ is even; $=\frac{2}{5}$ if $n$ is odd. Thus, $\limsup \left|a_{n}\right|^{1 / n}=\frac{6}{5}$ and $\liminf \left|a_{n}\right|^{1 / n}=\frac{2}{5}$. If $n$ is odd, $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(6 / 5)^{n+1}}{(2 / 5)^{n}}=\frac{6}{5} \cdot 3^{n} \rightarrow \infty$; if $n$ is even, $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(2 / 5)^{n+1}}{(6 / 5)^{n}}=\frac{2}{5} \cdot\left(\frac{1}{3}\right)^{n} \rightarrow 0$. So $\limsup \left|\frac{a_{n+1}}{a_{n}}\right|=\infty$ and $\lim \inf \left|\frac{a_{n+1}}{a_{n}}\right|=0$.
(b) From (a) we know that the radius of the power series $\sum a_{n} x^{n}$ is $R=1 / \limsup \left|a_{n}\right|^{1 / n}=$ $5 / 6$. Since $\sum a_{n}$ and $\sum(-1)^{n} a_{n}$ are the power series at 1 and -1 , and $|1|=|-1|>R$, they should both diverge.
(c) We have found in (b) that the radius is $5 / 6$. When $x=5 / 6$ or $-5 / 6$, we have $a_{n} x^{n}=1$ for even $n$. So we do not have $a_{n} x^{n} \rightarrow 0$. Then $\sum a_{n} x^{n}$ diverges at $x=5 / 6$ or $-5 / 6$. Thus, the interval of convergence is $(-5 / 6,5 / 6)$.
23.5 Consider a power series $\sum a_{n} x^{n}$ with radius of convergence $R$.
(a) Prove that if all the coefficients $a_{n}$ are integers and if infinitely many of them are nonzero, then $R \leq 1$.
(b) Prove that if lim $\sup \left|a_{n}\right|>0$, then $R \leq 1$. Hint: You may work out (b) first and use it to prove (a).

Proof. (b) We may find a subsequence $\left(a_{n_{k}}\right)$ of $\left(a_{n}\right)$ such that $\lim \left|a_{n_{k}}\right|=\lim \sup \left|a_{n}\right|>0$. Since the limit is positive, we can find $x>0$ and $N \in \mathbb{N}$ such that $\left|a_{n_{k}}\right| \geq x$ for $k>N$. Then we have $\left|a_{n_{k}}\right|^{1 / n_{k}} \geq x^{1 / n_{k}}$ for all $k>N$. From $x^{1 / n_{k}} \rightarrow 1$ we then get $\beta=\lim \sup \left|a_{n}\right|^{1 / n} \geq \limsup \left|a_{n_{k}}\right|^{1 / n_{k}} \geq \lim x^{1 / n_{k}}=1$. Then $R=1 / \beta \leq 1$.
(a) If $a_{n}$ are all integers and infinitely many of them are nonzero, then there are infinitely many $n$ such that $\left|a_{n}\right| \geq 1$. Then we have $\lim \sup \left|a_{n}\right| \geq 1$. From (b) we conclude that $R \leq 1$.
24.2 For $x \in[0, \infty)$, let $f_{n}(x)=\frac{x}{n}$.
(a) Find $f(x)=\lim f_{n}(x)$.
(b) Determine whether $f_{n} \rightarrow f$ uniformly on $[0,1]$.
(c) Determine whether $f_{n} \rightarrow f$ uniformly on $[0, \infty)$.

Solution. (a) Since $\lim f_{n}(x)=\lim \frac{x}{n}=0$ for all $x \in \mathbb{R}, f$ is constant 0 on $\mathbb{R}$.
(b) We have $f_{n} \rightarrow f$ uniformly on $[0,1]$ by Remark 24.4 because $\sup \left\{\left|f_{n}(x)-f(x)\right|: x \in\right.$ $[0,1]\}=\sup \left\{\frac{x}{n}: x \in[0,1]\right\}=\frac{1}{n} \rightarrow 0$.
(c) By Remark 24.4, we do not have $f_{n} \rightarrow f$ uniformly on $[0, \infty)$ because $\sup \left\{\mid f_{n}(x)-\right.$ $f(x) \mid: x \in[0, \infty)\}=\sup \left\{\frac{x}{n}: x \in[0, \infty)\right\}=\infty$ for each $n$.
24.3 Repeat Exercise 24.2 for $f_{n}(x)=\frac{1}{1+x^{n}}$.

Solution. (a) If $x \in[0,1), x^{n} \rightarrow 0$; if $x=1, x^{n} \rightarrow 1$; if $x>1, x^{n} \rightarrow \infty$. Thus, $f(x)=\lim f_{n}(x)=\frac{1}{1+0}=1$ on $[0,1) ;=\frac{1}{1+1}=\frac{1}{2}$ at $1 ;$ and $=\frac{1}{1+\infty}=0$ on $(1, \infty)$.
(b) We do not have $f_{n} \rightarrow f$ uniformly on $[0,1]$ because if the uniform convergence holds, then from the continuity of each $f_{n}$ we could conclude from Theorem 24.3 that $f$ is continuous. However, $f$ is not continuous at 1 . So the uniform convergence does not hold.
(c) For a similar reason, $f_{n}$ does not converge to $f$ uniformly on $[0, \infty)$.
24.10 (a) Prove that if $f_{n} \rightarrow f$ uniformly on $S$ and $g_{n} \rightarrow g$ uniformly on $S$, then $f_{n}+g_{n} \rightarrow f+g$ uniformly on $S$.

Proof. Let $\varepsilon>0$. Since $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ uniformly on $S$, there are $N_{f}, N_{g} \in \mathbb{N}$ such that if $n>N_{f}$ then for every $x \in S,\left|f_{n}(x)-f(x)\right|<\frac{\varepsilon}{2}$; and if $n>N_{g}$ then for every $x \in S,\left|g_{n}(x)-g(x)\right|<\frac{\varepsilon}{2}$. Let $N=\max \left\{N_{f}, N_{g}\right\}$. If $n>N$, then for every $x \in S$,

$$
\left|\left(f_{n}+g_{n}\right)(x)-(f+g)(x)\right| \leq\left|f_{n}(x)-f(x)\right|+\left|g_{n}(x)-g(x)\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

Then we conclude that $f_{n}+g_{n} \rightarrow f+g$ uniformly on $S$.
24.11 Let $f_{n}(x)=x$ and $g_{n}(x)=\frac{1}{n}$ for all $x \in \mathbb{R}$. Let $f(x)=x$ and $g(x)=0$ for all $x \in \mathbb{R}$.
(a) Observe $f_{n} \rightarrow f$ uniformly on R [obvious!] and $g_{n} \rightarrow g$ uniformly on R [almost obvious].
(b) Observe the sequence $\left(f_{n} g_{n}\right)$ does not converge uniformly to $f g$ on $\mathbb{R}$. Compare Exercise 24.2.

Proof. (a) Since $\sup \left\{\left|f_{n}(x)-f(x)\right|: x \in \mathbb{R}\right\}=0 \rightarrow 0$ and $\sup \left\{\left|g_{n}(x)-g(x)\right|: x \in \mathbb{R}\right\}=$ $\frac{1}{n} \rightarrow 0$, we get $f_{n} \rightarrow f$ uniformly on $\mathbb{R}$ and $g_{n} \rightarrow g$ uniformly on $\mathbb{R}$.
(b) $f_{n}(x) g_{n}(x)=\frac{x}{n}$ and $f(x) g(x)=0$. From Exercise 24.2, we know that $\left(f_{n} g_{n}\right)$ does not converge uniformly to $f g$ on $\mathbb{R}$.
24.12 Prove the assertion in Remark 24.4: A sequence $\left(f_{n}\right)$ of functions on a set $S \subseteq \mathbb{R}$ converges uniformly to a function $f$ on $S$ if and only if

$$
\lim _{n \rightarrow \infty} \sup \left\{\left|f(x)-f_{n}(x)\right|: x \in S\right\}=0 .
$$

Proof. First suppose $f_{n} \rightarrow f$ uniformly on $S$. Let $\varepsilon>0$. Then there is $N \in \mathbb{N}$ such that for any $n>N$, we have $\left|f_{n}(x)-f(x)\right|<\varepsilon$ for all $x \in S$, which implies that $\sup _{x \in S}\left|f_{n}(x)-f(x)\right| \leq \varepsilon$. From this we see that $\lim _{n \rightarrow \infty} \sup \left\{\left|f(x)-f_{n}(x)\right|: x \in S\right\}=0$. On the other hand, suppose $\lim _{n \rightarrow \infty} \sup \left\{\left|f(x)-f_{n}(x)\right|: x \in S\right\}=0$. Let $\varepsilon>0$. Then there is $N \in \mathbb{N}$ such that for $n>N$, $\sup _{x \in S}\left|f_{n}(x)-f(x)\right|<\varepsilon$, which then implies that $\left|f_{( }(x)-f(x)\right| \leq \sup _{x \in S}\left|f_{n}(x)-f(x)\right|<\varepsilon$ for all $x \in S$. So $f_{n} \rightarrow f$ uniformly on $S$.

