Homework 10 Solutions

23.1 For each of the following power series, find the radius of convergence and determine the exact interval of convergence. (a) $\sum n^2 x^n$; (c) $\sum \left(\frac{2^n}{n^2}\right) x^n$; (e) $\sum \left(\frac{2^n}{n!}\right) x^n$; (g) $\sum \left(\frac{3^n}{n \cdot 4^n}\right) x^n$.

Solution. (a) Here $a_n = n^2$. So $|\frac{a_{n+1}}{a_n}| = \frac{(n+1)^2}{n^2} = (1+\frac{1}{n})^2 \to 1$. Thus, $\beta = 1$ and the radius $R = 1/\beta = 1$. It remains to check the convergence at x = 1 and x = -1. Since for x = 1 or -1, $|n^2x^n| = n^2 \to \infty$, we do not have $n^2x^n \to 0$. So $\sum n^2x^n$ diverges if x = 1 or -1. Thus, the interval of convergence I is (-1, 1).

(c) Here $a_n = \frac{2^n}{n^2}$. So $|\frac{a_{n+1}}{a_n}| = \frac{2^{n+1}/(n+1)^2}{2^n/n^2} = \frac{2^{n+1}n^2}{2^n(n+1)^2} = \frac{2}{(1+1/n)^2} \to 2$. Thus, $\beta = 2$ and R = 1/2. It remains to check the convergence at x = 1/2 and x = -1/2. Since when |x| = 1/2, $|(\frac{2^n}{n^2})x^n| = \frac{1}{n^2}$, and $\sum \frac{1}{n^2}$ converges, by comparison test, $\sum (\frac{2^n}{n^2})x^n$ converges at x = 1/2 and x = -1/2. Thus, I = [-1/2, 1/2].

(e) Here $a_n = \frac{2^n}{n!}$. So $|\frac{a_{n+1}}{a_n}| = \frac{2^{n+1}/(n+1)!}{2^n/n!} = \frac{2^{n+1}n!}{2^n(n+1)!} = \frac{2}{n+1} \to 0$. Thus, $\beta = 0$ and $R = \infty$. Then we have $I = \mathbb{R}$.

(g) Here $a_n = \frac{3^n}{n \cdot 4^n}$. So $\left|\frac{a_{n+1}}{a_n}\right| = \frac{(3/4)^{n+1}/(n+1)}{(3/4)^n/n} = \frac{3/4n}{n+1} = \frac{3/4}{1+1/n} \to \frac{3}{4}$. Thus, $\beta = 3/4$ and R = 4/3. It remains to check the convergence at x = 4/3 and x = -4/3. When x = 4/3, the series becomes $\sum \frac{1}{n}$, which diverges. When x = -4/3, the series becomes $\sum \frac{(-1)^n}{n}$, which converges by alternative series test. So I = [-4/3, 4/3).

23.4 For n = 0, 1, 2, 3, ..., let $a_n = \left[\frac{4+2(-1)^n}{5}\right]^n$.

- (a) Find $\limsup |a_n|^{1/n}$, $\liminf |a_n|^{1/n}$, $\limsup |\frac{a_{n+1}}{a_n}|$ and $\liminf |\frac{a_{n+1}}{a_n}|$.
- (b) Do the series $\sum a_n$ and $\sum (-1)^n a_n$ converge? Explain briefly.
- (c) Now consider the power series $\sum a_n x^n$ with the coefficients a_n as above. Find the radius of convergence and determine the exact interval of convergence for the series.

Solution. (a) We have $|a_n|^{1/n} = \frac{4+2(-1)^n}{5} = \frac{6}{5}$ if n is even; $= \frac{2}{5}$ if n is odd. Thus, lim sup $|a_n|^{1/n} = \frac{6}{5}$ and lim inf $|a_n|^{1/n} = \frac{2}{5}$. If n is odd, $|\frac{a_{n+1}}{a_n}| = \frac{(6/5)^{n+1}}{(2/5)^n} = \frac{6}{5} \cdot 3^n \to \infty$; if n is even, $|\frac{a_{n+1}}{a_n}| = \frac{(2/5)^{n+1}}{(6/5)^n} = \frac{2}{5} \cdot (\frac{1}{3})^n \to 0$. So $\limsup |\frac{a_{n+1}}{a_n}| = \infty$ and $\liminf |\frac{a_{n+1}}{a_n}| = 0$. (b) From (a) we know that the radius of the power series $\sum a_n x^n$ is $R = 1/\limsup |a_n|^{1/n} = 5/6$. Since $\sum a_n$ and $\sum (-1)^n a_n$ are the power series at 1 and -1, and |1| = |-1| > R, they should both diverge.

(c) We have found in (b) that the radius is 5/6. When x = 5/6 or -5/6, we have $a_n x^n = 1$ for even n. So we do not have $a_n x^n \to 0$. Then $\sum a_n x^n$ diverges at x = 5/6 or -5/6. Thus, the interval of convergence is (-5/6, 5/6).

23.5 Consider a power series $\sum a_n x^n$ with radius of convergence R.

- (a) Prove that if all the coefficients a_n are integers and if infinitely many of them are nonzero, then $R \leq 1$.
- (b) Prove that if $\limsup |a_n| > 0$, then $R \le 1$. Hint: You may work out (b) first and use it to prove (a).

Proof. (b) We may find a subsequence (a_{n_k}) of (a_n) such that $\lim |a_{n_k}| = \limsup |a_n| > 0$. Since the limit is positive, we can find x > 0 and $N \in \mathbb{N}$ such that $|a_{n_k}| \ge x$ for k > N. Then we have $|a_{n_k}|^{1/n_k} \ge x^{1/n_k}$ for all k > N. From $x^{1/n_k} \to 1$ we then get $\beta = \limsup |a_n|^{1/n} \ge \limsup |a_{n_k}|^{1/n_k} \ge \lim x^{1/n_k} = 1$. Then $R = 1/\beta \le 1$.

(a) If a_n are all integers and infinitely many of them are nonzero, then there are infinitely many n such that $|a_n| \ge 1$. Then we have $\limsup |a_n| \ge 1$. From (b) we conclude that $R \le 1$.

24.2 For $x \in [0, \infty)$, let $f_n(x) = \frac{x}{n}$.

- (a) Find $f(x) = \lim f_n(x)$.
- (b) Determine whether $f_n \to f$ uniformly on [0, 1].
- (c) Determine whether $f_n \to f$ uniformly on $[0, \infty)$.

Solution. (a) Since $\lim f_n(x) = \lim \frac{x}{n} = 0$ for all $x \in \mathbb{R}$, f is constant 0 on \mathbb{R} .

(b) We have $f_n \to f$ uniformly on [0,1] by Remark 24.4 because $\sup\{|f_n(x) - f(x)| : x \in [0,1]\} = \sup\{\frac{x}{n} : x \in [0,1]\} = \frac{1}{n} \to 0.$

(c) By Remark 24.4, we do not have $f_n \to f$ uniformly on $[0, \infty)$ because $\sup\{|f_n(x) - f(x)| : x \in [0, \infty)\} = \sup\{\frac{x}{n} : x \in [0, \infty)\} = \infty$ for each n.

24.3 Repeat Exercise 24.2 for $f_n(x) = \frac{1}{1+x^n}$.

Solution. (a) If $x \in [0,1)$, $x^n \to 0$; if x = 1, $x^n \to 1$; if x > 1, $x^n \to \infty$. Thus, $f(x) = \lim_{n \to \infty} f_n(x) = \frac{1}{1+0} = 1$ on [0,1); $= \frac{1}{1+1} = \frac{1}{2}$ at 1; and $= \frac{1}{1+\infty} = 0$ on $(1,\infty)$.

(b) We do not have $f_n \to f$ uniformly on [0, 1] because if the uniform convergence holds, then from the continuity of each f_n we could conclude from Theorem 24.3 that f is continuous. However, f is not continuous at 1. So the uniform convergence does not hold.

(c) For a similar reason, f_n does not converge to f uniformly on $[0, \infty)$.

24.10 (a) Prove that if $f_n \to f$ uniformly on S and $g_n \to g$ uniformly on S, then $f_n + g_n \to f + g$ uniformly on S.

Proof. Let $\varepsilon > 0$. Since $f_n \to f$ and $g_n \to g$ uniformly on S, there are $N_f, N_g \in \mathbb{N}$ such that if $n > N_f$ then for every $x \in S$, $|f_n(x) - f(x)| < \frac{\varepsilon}{2}$; and if $n > N_g$ then for every $x \in S$, $|g_n(x) - g(x)| < \frac{\varepsilon}{2}$. Let $N = \max\{N_f, N_g\}$. If n > N, then for every $x \in S$,

$$|(f_n + g_n)(x) - (f + g)(x)| \le |f_n(x) - f(x)| + |g_n(x) - g(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Then we conclude that $f_n + g_n \to f + g$ uniformly on S.

24.11 Let $f_n(x) = x$ and $g_n(x) = \frac{1}{n}$ for all $x \in \mathbb{R}$. Let f(x) = x and g(x) = 0 for all $x \in \mathbb{R}$.

- (a) Observe $f_n \to f$ uniformly on R [obvious!] and $g_n \to g$ uniformly on R [almost obvious].
- (b) Observe the sequence $(f_n g_n)$ does not converge uniformly to fg on \mathbb{R} . Compare Exercise 24.2.

Proof. (a) Since $\sup\{|f_n(x) - f(x)| : x \in \mathbb{R}\} = 0 \to 0$ and $\sup\{|g_n(x) - g(x)| : x \in \mathbb{R}\} = \frac{1}{n} \to 0$, we get $f_n \to f$ uniformly on \mathbb{R} and $g_n \to g$ uniformly on \mathbb{R} .

(b) $f_n(x)g_n(x) = \frac{x}{n}$ and f(x)g(x) = 0. From Exercise 24.2, we know that (f_ng_n) does not converge uniformly to fg on \mathbb{R} .

24.12 Prove the assertion in Remark 24.4: A sequence (f_n) of functions on a set $S \subseteq \mathbb{R}$ converges uniformly to a function f on S if and only if

$$\lim_{n \to \infty} \sup\{|f(x) - f_n(x)| : x \in S\} = 0.$$

Proof. First suppose $f_n \to f$ uniformly on S. Let $\varepsilon > 0$. Then there is $N \in \mathbb{N}$ such that for any n > N, we have $|f_n(x) - f(x)| < \varepsilon$ for all $x \in S$, which implies that $\sup_{x \in S} |f_n(x) - f(x)| \le \varepsilon$. From this we see that $\lim_{n\to\infty} \sup\{|f(x) - f_n(x)| : x \in S\} = 0$. On the other hand, suppose $\lim_{n\to\infty} \sup\{|f(x) - f_n(x)| : x \in S\} = 0$. Let $\varepsilon > 0$. Then there is $N \in \mathbb{N}$ such that for n > N, $\sup_{x \in S} |f_n(x) - f(x)| < \varepsilon$, which then implies that $|f_n(x) - f(x)| \le \sup_{x \in S} |f_n(x) - f(x)| < \varepsilon$ for all $x \in S$. So $f_n \to f$ uniformly on S.