
Homework 10 Solutions

23.1 For each of the following power series, find the radius of convergence and determine the
exact interval of convergence. (a)

∑
n2xn; (c)

∑
(2

n

n2 )xn; (e)
∑

(2
n

n! )x
n; (g)

∑
( 3n

n·4n )xn.

Solution. (a) Here an = n2. So |an+1

an
| = (n+1)2

n2 = (1 + 1
n)2 → 1. Thus, β = 1 and the

radius R = 1/β = 1. It remains to check the convergence at x = 1 and x = −1. Since for
x = 1 or −1, |n2xn| = n2 → ∞, we do not have n2xn → 0. So

∑
n2xn diverges if x = 1

or −1. Thus, the interval of convergence I is (−1, 1).

(c) Here an = 2n

n2 . So |an+1

an
| = 2n+1/(n+1)2

2n/n2 = 2n+1n2

2n(n+1)2
= 2

(1+1/n)2
→ 2. Thus, β = 2 and

R = 1/2. It remains to check the convergence at x = 1/2 and x = −1/2. Since when
|x| = 1/2, |(2n

n2 )xn| = 1
n2 , and

∑ 1
n2 converges, by comparison test,

∑
(2

n

n2 )xn converges at
x = 1/2 and x = −1/2. Thus, I = [−1/2, 1/2].

(e) Here an = 2n

n! . So |an+1

an
| = 2n+1/(n+1)!

2n/n! = 2n+1n!
2n(n+1)! = 2

n+1 → 0. Thus, β = 0 and
R =∞. Then we have I = R.

(g) Here an = 3n

n·4n . So |an+1

an
| = (3/4)n+1/(n+1)

(3/4)n/n = 3/4n
n+1 = 3/4

1+1/n →
3
4 . Thus, β = 3/4 and

R = 4/3. It remains to check the convergence at x = 4/3 and x = −4/3. When x = 4/3,

the series becomes
∑ 1

n , which diverges. When x = −4/3, the series becomes
∑ (−1)n

n ,
which converges by alternative series test. So I = [−4/3, 4/3).

23.4 For n = 0, 1, 2, 3, . . . , let an = [4+2(−1)n
5 ]n.

(a) Find lim sup |an|1/n, lim inf |an|1/n, lim sup |an+1

an
| and lim inf |an+1

an
|.

(b) Do the series
∑
an and

∑
(−1)nan converge? Explain briefly.

(c) Now consider the power series
∑
anx

n with the coefficients an as above. Find the
radius of convergence and determine the exact interval of convergence for the series.

Solution. (a) We have |an|1/n = 4+2(−1)n
5 = 6

5 if n is even; = 2
5 if n is odd. Thus,

lim sup |an|1/n = 6
5 and lim inf |an|1/n = 2

5 . If n is odd, |an+1

an
| = (6/5)n+1

(2/5)n = 6
5 · 3

n →∞; if

n is even, |an+1

an
| = (2/5)n+1

(6/5)n = 2
5 · (

1
3)n → 0. So lim sup |an+1

an
| =∞ and lim inf |an+1

an
| = 0.

(b) From (a) we know that the radius of the power series
∑
anx

n isR = 1/ lim sup |an|1/n =
5/6. Since

∑
an and

∑
(−1)nan are the power series at 1 and −1, and |1| = | − 1| > R,

they should both diverge.

(c) We have found in (b) that the radius is 5/6. When x = 5/6 or −5/6, we have anx
n = 1

for even n. So we do not have anx
n → 0. Then

∑
anx

n diverges at x = 5/6 or −5/6.
Thus, the interval of convergence is (−5/6, 5/6).

23.5 Consider a power series
∑
anx

n with radius of convergence R.
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(a) Prove that if all the coefficients an are integers and if infinitely many of them are
nonzero, then R ≤ 1.

(b) Prove that if lim sup |an| > 0, then R ≤ 1. Hint: You may work out (b) first and use
it to prove (a).

Proof. (b) We may find a subsequence (ank
) of (an) such that lim |ank

| = lim sup |an| > 0.
Since the limit is positive, we can find x > 0 and N ∈ N such that |ank

| ≥ x for
k > N . Then we have |ank

|1/nk ≥ x1/nk for all k > N . From x1/nk → 1 we then get
β = lim sup |an|1/n ≥ lim sup |ank

|1/nk ≥ limx1/nk = 1. Then R = 1/β ≤ 1.

(a) If an are all integers and infinitely many of them are nonzero, then there are infinitely
many n such that |an| ≥ 1. Then we have lim sup |an| ≥ 1. From (b) we conclude that
R ≤ 1.

24.2 For x ∈ [0,∞), let fn(x) = x
n .

(a) Find f(x) = lim fn(x).

(b) Determine whether fn → f uniformly on [0, 1].

(c) Determine whether fn → f uniformly on [0,∞).

Solution. (a) Since lim fn(x) = lim x
n = 0 for all x ∈ R, f is constant 0 on R.

(b) We have fn → f uniformly on [0, 1] by Remark 24.4 because sup{|fn(x)− f(x)| : x ∈
[0, 1]} = sup{xn : x ∈ [0, 1]} = 1

n → 0.

(c) By Remark 24.4, we do not have fn → f uniformly on [0,∞) because sup{|fn(x) −
f(x)| : x ∈ [0,∞)} = sup{xn : x ∈ [0,∞)} =∞ for each n.

24.3 Repeat Exercise 24.2 for fn(x) = 1
1+xn .

Solution. (a) If x ∈ [0, 1), xn → 0; if x = 1, xn → 1; if x > 1, xn → ∞. Thus,
f(x) = lim fn(x) = 1

1+0 = 1 on [0, 1); = 1
1+1 = 1

2 at 1; and = 1
1+∞ = 0 on (1,∞).

(b) We do not have fn → f uniformly on [0, 1] because if the uniform convergence holds,
then from the continuity of each fn we could conclude from Theorem 24.3 that f is
continuous. However, f is not continuous at 1. So the uniform convergence does not
hold.

(c) For a similar reason, fn does not converge to f uniformly on [0,∞).

24.10 (a) Prove that if fn → f uniformly on S and gn → g uniformly on S, then fn +gn → f+g
uniformly on S.
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Proof. Let ε > 0. Since fn → f and gn → g uniformly on S, there are Nf , Ng ∈ N such
that if n > Nf then for every x ∈ S, |fn(x) − f(x)| < ε

2 ; and if n > Ng then for every
x ∈ S, |gn(x)− g(x)| < ε

2 . Let N = max{Nf , Ng}. If n > N , then for every x ∈ S,

|(fn + gn)(x)− (f + g)(x)| ≤ |fn(x)− f(x)|+ |gn(x)− g(x)| < ε

2
+
ε

2
= ε.

Then we conclude that fn + gn → f + g uniformly on S.

24.11 Let fn(x) = x and gn(x) = 1
n for all x ∈ R. Let f(x) = x and g(x) = 0 for all x ∈ R.

(a) Observe fn → f uniformly on R [obvious!] and gn → g uniformly on R [almost
obvious].

(b) Observe the sequence (fngn) does not converge uniformly to fg on R. Compare
Exercise 24.2.

Proof. (a) Since sup{|fn(x)− f(x)| : x ∈ R} = 0 → 0 and sup{|gn(x)− g(x)| : x ∈ R} =
1
n → 0, we get fn → f uniformly on R and gn → g uniformly on R.

(b) fn(x)gn(x) = x
n and f(x)g(x) = 0. From Exercise 24.2, we know that (fngn) does not

converge uniformly to fg on R.

24.12 Prove the assertion in Remark 24.4: A sequence (fn) of functions on a set S ⊆ R converges
uniformly to a function f on S if and only if

lim
n→∞

sup{|f(x)− fn(x)| : x ∈ S} = 0.

Proof. First suppose fn → f uniformly on S. Let ε > 0. Then there is N ∈ N such that for any
n > N , we have |fn(x)− f(x)| < ε for all x ∈ S, which implies that supx∈S |fn(x)− f(x)| ≤ ε.
From this we see that limn→∞ sup{|f(x) − fn(x)| : x ∈ S} = 0. On the other hand, suppose
limn→∞ sup{|f(x)− fn(x)| : x ∈ S} = 0. Let ε > 0. Then there is N ∈ N such that for n > N ,
supx∈S |fn(x)− f(x)| < ε, which then implies that |f(x)− f(x)| ≤ supx∈S |fn(x)− f(x)| < ε for
all x ∈ S. So fn → f uniformly on S.
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