Homework 11 (due on $11 / 15$)

- Midterm 2 is Monday, November 18 in lecture. It will cover Sections 14-15, 17-20, 24-25, and 28 . A sample exam will be posted.
- Read Section 29 for the next week.
25.3 Let $f_{n}(x)=\frac{n+\cos x}{2 n+\sin ^{2} x}$ for all real numbers x.
(a) Show f_{n} converges uniformly on \mathbb{R}. Hint: First decide what the limit function is; then show $\left(f_{n}\right)$ converges uniformly to it. Use $|\cos x|,|\sin x| \leq 1$.
25.6 (a) Show that if $\sum\left|a_{n}\right|<\infty$, then $\sum a_{k} x^{k}$ converges uniformly on $[-1,1]$ to a continuous function.
25.7 Show $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos (n x)$ converges uniformly on \mathbb{R}.
25.10 (a) Show $\sum \frac{x^{n}}{1+x^{n}}$ converges for $x \in[0,1)$. Hint: Compare it with $\sum x^{n}$.
(b) Show that the series converges uniformly on $[0, a]$ for each $a, 0<a<1$.
(c) Does the series converge uniformly on $[0,1)$? Explain. Hint: We proved in class that $\sum x^{n}$ does not converge uniformly on $[0,1)$.
28.4 Let $f(x)=x^{2} \sin \frac{1}{x}$ for $x \neq 0$ and $f(0)=0$.
(a) Use Theorems 28.3 and 28.4 to show f is differentiable at each $a \neq 0$ and calculate $f^{\prime}(a)$. Use, without proof, the fact that $\sin x$ is differentiable and that $\cos x$ is its derivative.
(b) Use the definition to show f is differentiable at $x=0$ and $f^{\prime}(0)=0$.
(c) Show f^{\prime} is not continuous at $x=0$.
28.7 Let $f(x)=x^{2}$ for $x \geq 0$ and $f(x)=0$ for $x<0$.
(b) Show f is differentiable at $x=0$ and calculate $f^{\prime}(0)$. Hint: You will have to use the definition of derivative. You may first consider one-sided derivatives.
(c) Calculate $f^{\prime}(x)$ for $x>0$ and $x<0$.
(d) Is f^{\prime} continuous on \mathbb{R} ? differentiable on \mathbb{R} ? Explain.
28.9 Let $h(x)=\left(x^{4}+13 x\right)^{7}$. (a) Calculate $h^{\prime}(x)$.
28.10 Let $h(x)=\left(\cos x+e^{x}\right)^{12}$. (a) Calculate $h^{\prime}(x)$. You may use the fact that $\cos x$ and e^{x} are differentiable and that $-\sin x$ and e^{x} are their derivatives.
28.11 Suppose f is differentiable at a, g is differentiable at $f(a)$, and h is differentiable at $g \circ f(a)$. State and prove the chain rule for $(h \circ g \circ f)^{\prime}(a)$. Hint: Apply Theorem 28.4 twice.

