Homework 11 Solutions

25.3 Let $f_{n}(x)=\frac{n+\cos x}{2 n+\sin ^{2} x}$ for all real numbers x.
(a) Show f_{n} converges uniformly on \mathbb{R}. Hint: First decide what the limit function is; then show $\left(f_{n}\right)$ converges uniformly to it. Use $|\cos x|,|\sin x| \leq 1$.

Proof. We write $f_{n}(x)=\frac{1+\frac{1}{n} \cos x}{2+\frac{1}{n} \sin ^{2} x}$. Since $\frac{1}{n} \cos x \rightarrow 0$ and $\frac{1}{n} \sin ^{2} x \rightarrow 0$ as $n \rightarrow \infty$, we have $f_{n}(x) \rightarrow \frac{1}{2}$ pointwise on \mathbb{R}. We now show that $f_{n}(x) \rightarrow \frac{1}{2}$ uniformly on \mathbb{R}. We calculate for $x \in \mathbb{R}$,

$$
\left|f_{n}(x)-\frac{1}{2}\right|=\left|\frac{n+\cos x}{2 n+\sin ^{2} x}-\frac{1}{2}\right|=\left|\frac{2 \cos x-\sin ^{2} x}{2\left(2 n+\sin ^{2} x\right)}\right|=\frac{\left|2 \cos x-\sin ^{2} x\right|}{2\left|2 n+\sin ^{2} x\right|} \leq \frac{3}{2(2 n-1)},
$$

where in the last inequality we used the triangle inequality: $\left|2 \cos x-\sin ^{2} x\right| \leq|2 \cos x|+$ $\left|\sin ^{2} x\right| \leq 2+1=3$ and $\left|2 n+\sin ^{2} x\right| \geq 2 n-\left|\sin ^{2} x\right| \geq 2 n-1>0$. Thus,

$$
\sup \left\{\left|f_{n}(x)-\frac{1}{2}\right|: x \in \mathbb{R}\right\} \leq \frac{3}{2(2 n-1)}, \quad n \in \mathbb{N} .
$$

Since $\frac{3}{2(2 n-1)} \rightarrow 0$, we get $f_{n} \rightarrow \frac{1}{2}$ uniformly on \mathbb{R}.
25.6 (a) Show that if $\sum\left|a_{n}\right|<\infty$, then $\sum a_{k} x^{k}$ converges uniformly on $[-1,1]$ to a continuous function.

Proof. Since $\left|a_{k} x^{k}\right| \leq\left|a_{k}\right|$ for $x \in[-1,1]$ and $\sum\left|a_{n}\right|<\infty$, by Weierstrass M-test, $\sum a_{k} x^{k}$ converges uniformly on $[-1,1]$. Since $a_{k} x^{k}$ is continuous for each k, by Theorem 24.3 the limit of $\sum a_{k} x^{k}$ is continuous on $[-1,1]$.
25.7 Show $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos (n x)$ converges uniformly on \mathbb{R}.

Proof. Since $\left|\frac{1}{n^{2}} \cos (n x)\right| \leq \frac{1}{n^{2}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, by Weierstrass M-test, $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos (n x)$ converges uniformly on \mathbb{R}.
25.10 (a) Show $\sum \frac{x^{n}}{1+x^{n}}$ converges for $x \in[0,1)$.
(b) Show that the series converges uniformly on [$0, a$] for each $a, 0<a<1$.
(c) Does the series converge uniformly on $[0,1)$? Explain. Hint: Compare it with $\sum \frac{x^{n}}{2}$.

Proof. (a) For each $x \in[0,1)$, since $\left|\frac{x^{n}}{1+x^{n}}\right|=\frac{x^{n}}{1+x^{n}} \leq x^{n}$ and $\sum x^{n}$ converges, by Comparison test, $\sum \frac{x^{n}}{1+x^{n}}$ converges.
(b) For each $a \in(0,1)$, we have $\left|\frac{x^{n}}{1+x^{n}}\right| \leq x^{n} \leq a^{n}$ for $x \in[0, a]$. Since $\sum a^{n}$ converges, by Weierstrass M-test, $\sum \frac{x^{n}}{1+x^{n}}$ converges uniformly on $[0, a]$.
(c) The series does not converge uniformly on $[0,1)$. Suppose $\sum \frac{x^{n}}{1+x^{n}}$ converges uniformly on $[0,1)$. Then the series satisfies the Cauchy criterion uniformly on $[0,1)$, i.e., for any $\varepsilon>0$, there is $N \in \mathbb{N}$, such that for $n \geq m>N$,

$$
\left|\sum_{k=m}^{n} \frac{x^{k}}{1+x^{k}}\right|<\varepsilon, \quad \forall x \in[0,1) .
$$

Since $\frac{x^{k}}{1+x^{k}} \geq \frac{x^{k}}{2}$ on $[0,1)$ for each k, we then get

$$
\left|\sum_{k=m}^{n} x^{k}\right|<2 \varepsilon, \quad \forall x \in[0,1)
$$

This means that $\sum x^{n}$ satisfies the Cauchy criterion uniformly on $[0,1)$, which then implies that $\sum x^{n}$ converges uniformly on $[0,1)$. However, we have proved in class that $\sum x^{n}$ does not converge uniformly on $[0,1)$. So we get a contradiction.
28.4 Let $f(x)=x^{2} \sin \frac{1}{x}$ for $x \neq 0$ and $f(0)=0$.
(a) Use Theorems 28.3 and 28.4 to show f is differentiable at each $a \neq 0$ and calculate $f^{\prime}(a)$. Use, without proof, the fact that $\sin x$ is differentiable and that $\cos x$ is its derivative.
(b) Use the definition to show f is differentiable at $x=0$ and $f^{\prime}(0)=0$.
(c) Show f^{\prime} is not continuous at $x=0$.

Proof. (a) By Theorems 28.3, we see that $\frac{1}{x}$ is differentiable on $\mathbb{R} \backslash\{0\}$ and $\frac{d}{d x} \frac{1}{x}=-\frac{1}{x^{2}}$. By Theorem 28.4 and that $\sin ^{\prime} x=\cos x$, $\sin \frac{1}{x}$ is differentiable on $\mathbb{R} \backslash\{0\}$, and $\frac{d}{d x} \sin \frac{1}{x}=$ $\left(\sin ^{\prime} \frac{1}{x}\right) \cdot \frac{1}{x}$. By Theorem 28.3 again, $f(x)=x^{2} \sin \frac{1}{x}$ is differentiable on $\mathbb{R} \backslash\{0\}$, and

$$
f^{\prime}(x)=\frac{d}{d x}\left(x^{2}\right) \sin \frac{1}{x}+x^{2} \frac{d}{d x} \frac{1}{x}=2 x \sin \frac{1}{x}-\cos \frac{1}{x}, \quad x \neq 0 .
$$

(b) We calculate $\frac{f(x)-f(0)}{x-0}=\frac{f(x)}{x}=x \sin \frac{1}{x}$ for $x \neq 0$. Since $\left|x \sin \frac{1}{x}\right| \leq x$ and $\lim _{x \rightarrow 0} x=0$, by squeeze lemma we get $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$. So f is differentiable at 0 and

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0 .
$$

(c) Let $x_{n}=\frac{1}{2 n \pi}$. Then $x_{n} \rightarrow 0$ and $f^{\prime}\left(x_{n}\right)=\frac{2}{2 n \pi} \sin (2 n \pi)-\cos (2 n \pi)=-1 \nrightarrow 0=f^{\prime}(0)$. So f^{\prime} is not continuous at 0 .
28.7 Let $f(x)=x^{2}$ for $x \geq 0$ and $f(x)=0$ for $x<0$.
(b) Show f is differentiable at $x=0$ and calculate $f^{\prime}(0)$. Hint: You will have to use the definition of derivative. You may first consider one-sided derivatives.
(c) Calculate $f^{\prime}(x)$ for $x>0$ and $x<0$.
(d) Is f^{\prime} continuous on \mathbb{R} ? differentiable on \mathbb{R} ? Explain.

Proof. (b) For $x>0, \frac{f(x)-f(0)}{x-0}=\frac{x^{2}}{x}=x$. So $\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} x=0$. For $x<0, \frac{f(x)-f(0)}{x-0}=\frac{0-0}{x}=0$. So $\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=0$. Since $\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=$ $\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=0$, we get that f is differentiable at $x=0$ and $f^{\prime}(0)=0$.
(c) Since $f(x)=x^{2}$ for $x>0$, we have $f^{\prime}(x)=\frac{d}{d x} x^{2}=2 x$ for $x>0$. Since $f(x)=0$ for $x<0$, we have $f^{\prime}(x)=\frac{d}{d x} 0=0$ for $x<0$.
(d) We have $f^{\prime}(x)=2 x$ for $x \geq 0$ and $f^{\prime}(x)=0$ for $x \leq 0$. So f^{\prime} is continuous on \mathbb{R}. It is not differentiable on \mathbb{R}. Specifically, f^{\prime} is not differentiable at 0 . Note that for $x>0$, $\frac{f^{\prime}(x)-f^{\prime}(0)}{x-0}=\frac{2 x}{x}=2$. So $\lim _{x \rightarrow 0^{+}} \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0}=2$; for $x<0, \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0}=\frac{0-0}{x}=0$. So $\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=0 \neq \lim _{x \rightarrow 0^{+}} \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0}$. Thus, $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$ does not exist.
28.9 Let $h(x)=\left(x^{4}+13 x\right)^{7}$. (a) Calculate $h^{\prime}(x)$.

Solution. We write $h=g \circ f$, where $f(x)=x^{4}+13 x$ and $g(x)=x^{7}$. Then $f^{\prime}(x)=4 x^{3}+13$ and $g^{\prime}(x)=7 x^{6}$. By the chain rule,

$$
h^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)=7\left(x^{4}+13 x\right)^{6}\left(4 x^{3}+13\right) .
$$

28.10 Let $h(x)=\left(\cos x+e^{x}\right)^{12}$. (a) Calculate $h^{\prime}(x)$. You may use the fact that $\cos x$ and e^{x} are differentiable and that $-\sin x$ and e^{x} are their derivatives.

Solution. We write $h=g \circ f$, where $f(x)=\cos x+e^{x}$ and $g(x)=x^{12}$. Then $f^{\prime}(x)=$ $e^{x}-\sin x$ and $g^{\prime}(x)=12 x^{11}$. By the chain rule,

$$
h^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)=12\left(\cos x+e^{x}\right)^{11}\left(e^{x}-\sin x\right) .
$$

28.11 Suppose f is differentiable at a, g is differentiable at $f(a)$, and h is differentiable at $g \circ f(a)$. State and prove the chain rule for $(h \circ g \circ f)^{\prime}(a)$. Hint: Apply Theorem 28.4 twice.

Solution. We have that $h \circ g \circ f$ is differentiable at a, and

$$
(h \circ g \circ f)^{\prime}(a)=h^{\prime}(g \circ f(a)) g^{\prime}\left(f(a) f^{\prime}(a) .\right.
$$

To prove this statement, we write $h \circ g \circ f=h \circ(g \circ f)$. By Theorem 28.4, $g \circ f$ is differentiable at a, and $(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) f^{\prime}(a)$. Since h is differentiable at $(g \circ f)(a)$, by Theorem 28.4, $h \circ g \circ f=h \circ(g \circ f)$ is differentiable at a, and

$$
(h \circ g \circ f)^{\prime}(a)=h^{\prime}(g \circ f(a))(g \circ f)^{\prime}(a)=h^{\prime}(g \circ f(a)) g^{\prime}\left(f(a) f^{\prime}(a) .\right.
$$

