
Homework 11 Solutions

25.3 Let fn(x) = n+cosx
2n+sin2 x

for all real numbers x.

(a) Show fn converges uniformly on R. Hint: First decide what the limit function is;
then show (fn) converges uniformly to it. Use | cosx|, | sinx| ≤ 1.

Proof. We write fn(x) =
1+ 1

n
cosx

2+ 1
n
sin2 x

. Since 1
n cosx → 0 and 1

n sin2 x → 0 as n → ∞, we

have fn(x) → 1
2 pointwise on R. We now show that fn(x) → 1

2 uniformly on R. We
calculate for x ∈ R,

|fn(x)− 1

2
| =

∣∣∣ n+ cosx

2n+ sin2 x
− 1

2

∣∣∣ =
∣∣∣2 cosx− sin2 x

2(2n+ sin2 x)

∣∣∣ =
|2 cosx− sin2 x|

2|2n+ sin2 x|
≤ 3

2(2n− 1)
,

where in the last inequality we used the triangle inequality: |2 cosx− sin2 x| ≤ |2 cosx|+
| sin2 x| ≤ 2 + 1 = 3 and |2n+ sin2 x| ≥ 2n− | sin2 x| ≥ 2n− 1 > 0. Thus,

sup{|fn(x)− 1

2
| : x ∈ R} ≤ 3

2(2n− 1)
, n ∈ N.

Since 3
2(2n−1) → 0, we get fn → 1

2 uniformly on R.

25.6 (a) Show that if
∑
|an| <∞, then

∑
akx

k converges uniformly on [−1, 1] to a continuous
function.

Proof. Since |akxk| ≤ |ak| for x ∈ [−1, 1] and
∑
|an| <∞, by Weierstrass M-test,

∑
akx

k

converges uniformly on [−1, 1]. Since akx
k is continuous for each k, by Theorem 24.3 the

limit of
∑
akx

k is continuous on [−1, 1].

25.7 Show
∑∞

n=1
1
n2 cos(nx) converges uniformly on R.

Proof. Since | 1
n2 cos(nx)| ≤ 1

n2 and
∑∞

n=1
1
n2 converges, by Weierstrass M-test,

∑∞
n=1

1
n2 cos(nx)

converges uniformly on R.

25.10 (a) Show
∑ xn

1+xn converges for x ∈ [0, 1).

(b) Show that the series converges uniformly on [0, a] for each a, 0 < a < 1.

(c) Does the series converge uniformly on [0, 1)? Explain. Hint: Compare it with
∑ xn

2 .

Proof. (a) For each x ∈ [0, 1), since | xn1+xn | = xn

1+xn ≤ xn and
∑
xn converges, by Com-

parison test,
∑ xn

1+xn converges.

(b) For each a ∈ (0, 1), we have | xn1+xn | ≤ x
n ≤ an for x ∈ [0, a]. Since

∑
an converges, by

Weierstrass M-test,
∑ xn

1+xn converges uniformly on [0, a].

1



(c) The series does not converge uniformly on [0, 1). Suppose
∑ xn

1+xn converges uniformly
on [0, 1). Then the series satisfies the Cauchy criterion uniformly on [0, 1), i.e., for any
ε > 0, there is N ∈ N, such that for n ≥ m > N ,∣∣∣ n∑

k=m

xk

1 + xk

∣∣∣ < ε, ∀x ∈ [0, 1).

Since xk

1+xk
≥ xk

2 on [0, 1) for each k, we then get

∣∣∣ n∑
k=m

xk
∣∣∣ < 2ε, ∀x ∈ [0, 1).

This means that
∑
xn satisfies the Cauchy criterion uniformly on [0, 1), which then implies

that
∑
xn converges uniformly on [0, 1). However, we have proved in class that

∑
xn does

not converge uniformly on [0, 1). So we get a contradiction.

28.4 Let f(x) = x2 sin 1
x for x 6= 0 and f(0) = 0.

(a) Use Theorems 28.3 and 28.4 to show f is differentiable at each a 6= 0 and calculate
f ′(a). Use, without proof, the fact that sinx is differentiable and that cosx is its
derivative.

(b) Use the definition to show f is differentiable at x = 0 and f ′(0) = 0.

(c) Show f ′ is not continuous at x = 0.

Proof. (a) By Theorems 28.3, we see that 1
x is differentiable on R \ {0} and d

dx
1
x = − 1

x2
.

By Theorem 28.4 and that sin′ x = cosx, sin 1
x is differentiable on R \ {0}, and d

dx sin 1
x =

(sin′ 1x) · 1x . By Theorem 28.3 again, f(x) = x2 sin 1
x is differentiable on R \ {0}, and

f ′(x) =
d

dx
(x2) sin

1

x
+ x2

d

dx

1

x
= 2x sin

1

x
− cos

1

x
, x 6= 0.

(b) We calculate f(x)−f(0)
x−0 = f(x)

x = x sin 1
x for x 6= 0. Since |x sin 1

x | ≤ x and limx→0 x = 0,

by squeeze lemma we get limx→0 x sin 1
x = 0. So f is differentiable at 0 and

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0
x sin

1

x
= 0.

(c) Let xn = 1
2nπ . Then xn → 0 and f ′(xn) = 2

2nπ sin(2nπ)− cos(2nπ) = −1 6→ 0 = f ′(0).
So f ′ is not continuous at 0.

28.7 Let f(x) = x2 for x ≥ 0 and f(x) = 0 for x < 0.
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(b) Show f is differentiable at x = 0 and calculate f ′(0). Hint: You will have to use the
definition of derivative. You may first consider one-sided derivatives.

(c) Calculate f ′(x) for x > 0 and x < 0.

(d) Is f ′ continuous on R? differentiable on R? Explain.

Proof. (b) For x > 0, f(x)−f(0)
x−0 = x2

x = x. So limx→0+
f(x)−f(0)

x−0 = limx→0+ x = 0.

For x < 0, f(x)−f(0)
x−0 = 0−0

x = 0. So limx→0−
f(x)−f(0)

x−0 = 0. Since limx→0+
f(x)−f(0)

x−0 =

limx→0−
f(x)−f(0)

x−0 = 0, we get that f is differentiable at x = 0 and f ′(0) = 0.

(c) Since f(x) = x2 for x > 0, we have f ′(x) = d
dxx

2 = 2x for x > 0. Since f(x) = 0 for

x < 0, we have f ′(x) = d
dx0 = 0 for x < 0.

(d) We have f ′(x) = 2x for x ≥ 0 and f ′(x) = 0 for x ≤ 0. So f ′ is continuous on R. It
is not differentiable on R. Specifically, f ′ is not differentiable at 0. Note that for x > 0,
f ′(x)−f ′(0)

x−0 = 2x
x = 2. So limx→0+

f ′(x)−f ′(0)
x−0 = 2; for x < 0, f ′(x)−f ′(0)

x−0 = 0−0
x = 0. So

limx→0−
f(x)−f(0)

x−0 = 0 6= limx→0+
f ′(x)−f ′(0)

x−0 . Thus, limx→0
f(x)−f(0)

x−0 does not exist.

28.9 Let h(x) = (x4 + 13x)7. (a) Calculate h′(x).

Solution. We write h = g◦f , where f(x) = x4+13x and g(x) = x7. Then f ′(x) = 4x3+13
and g′(x) = 7x6. By the chain rule,

h′(x) = g′(f(x))f ′(x) = 7(x4 + 13x)6(4x3 + 13).

28.10 Let h(x) = (cosx + ex)12. (a) Calculate h′(x). You may use the fact that cosx and ex

are differentiable and that − sinx and ex are their derivatives.

Solution. We write h = g ◦ f , where f(x) = cosx + ex and g(x) = x12. Then f ′(x) =
ex − sinx and g′(x) = 12x11. By the chain rule,

h′(x) = g′(f(x))f ′(x) = 12(cosx+ ex)11(ex − sinx).

28.11 Suppose f is differentiable at a, g is differentiable at f(a), and h is differentiable at g◦f(a).
State and prove the chain rule for (h ◦ g ◦ f)′(a). Hint: Apply Theorem 28.4 twice.
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Solution. We have that h ◦ g ◦ f is differentiable at a, and

(h ◦ g ◦ f)′(a) = h′(g ◦ f(a))g′(f(a)f ′(a).

To prove this statement, we write h ◦ g ◦ f = h ◦ (g ◦ f). By Theorem 28.4, g ◦ f is
differentiable at a, and (g ◦ f)′(a) = g′(f(a))f ′(a). Since h is differentiable at (g ◦ f)(a),
by Theorem 28.4, h ◦ g ◦ f = h ◦ (g ◦ f) is differentiable at a, and

(h ◦ g ◦ f)′(a) = h′(g ◦ f(a))(g ◦ f)′(a) = h′(g ◦ f(a))g′(f(a)f ′(a).
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