Homework 12 (due on $11 / 25$)

- We will have the second midterm exam on November 18. The due date of this homework is postponed to November 25.
- Read Sections 26, 30, 31 for the next week.
29.2 Prove $|\cos x-\cos y| \leq|x-y|$ for all $x, y \in \mathbb{R}$.
29.3 Suppose f is differentiable on \mathbb{R} and $f(0)=0, f(1)=1$ and $f(2)=1$.
(a) Show $f^{\prime}(x)=\frac{1}{2}$ for some $x \in(0,2)$. Hint: Apply Theorem 29.3.
(b) Show $f^{\prime}(x)=\frac{1}{7}$ for some $x \in(0,2)$. Hint: Apply Theorems 29.3 and 29.8.
29.4 Let f and g be differentiable functions on an open interval I. Suppose a, b in I satisfy $a<b$ and $f(a)=f(b)=0$. Show $f^{\prime}(x)+f(x) g^{\prime}(x)=0$ for some $x \in(a, b)$. Hint: Consider $h(x)=f(x) e^{g(x)}$.
29.7 (a) Suppose f is twice differentiable on an open interval I and $f^{\prime \prime}(x)=0$ for all $x \in I$. Show f has the form $f(x)=a x+b$ for suitable constants a and b.
Hint: Apply Corollary 29.4 to f^{\prime} to conclude that f^{\prime} is a constant a. Then apply Corollary 29.4 again to $g(x):=f(x)-a x$.
(b) Suppose f is three times differentiable on an open interval I and $f^{\prime \prime \prime}=0$ on I. What form does f have? Prove your claim. Hint: Apply Corollary 29.4 three times.
29.9 Show $e x \leq e^{x}$ for all $x \in R$.

Hint: Let $f(x)=e^{x}-e x$. Observe the value of $\mathrm{f}(1)$ and the signs of $f^{\prime}(x)$.
29.13 Prove that if f and g are differentiable on \mathbb{R}, if $f(0)=g(0)$ and if $f^{\prime}(x) \leq g^{\prime}(x)$ for all $x \in \mathbb{R}$, then $f(x) \leq g(x)$ for $x \geq 0$.
29.16 Use Theorem 29.9 to obtain the derivative of the inverse $g=\operatorname{Tan}^{-1}=\arctan$ of f where $f(x)=\tan x$ for $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
29.18 Let f be differentiable on \mathbb{R} with $a=\sup \left\{\left|f^{\prime}(x)\right|: x \in \mathbb{R}\right\}<1$.
(a) Select $s_{0} \in \mathbb{R}$ and define $s_{n}=f\left(s_{n-1}\right)$ for $n \geq 1$. Thus $s_{1}=f\left(s_{0}\right), s_{2}=f\left(s_{1}\right)$, etc. Prove $\left(s_{n}\right)$ is a convergent sequence.
Hint: To show that $\left(s_{n}\right)$ is Cauchy, first show $\left|s_{n+1}-s_{n}\right| \leq a\left|s_{n}-s_{n-1}\right|$ for $n \geq 1$.
(b) Show f has a fixed point, i.e., $f(s)=s$ for some s in \mathbb{R}, and such point is unique.

