Homework 1 Solutions

1.3 Prove $1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}$ for all positive integers n.

Solution. We prove by induction. The base case $1^{3}=1^{2}$ is true. Suppose the statement holds for n. So

$$
1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

where the second " $=$ " follows from $1+2+\cdots+n=\frac{n(n+1)}{2}$. We now prove the statement for $n+1$. By the displayed formula,

$$
\begin{aligned}
& 1^{3}+2^{3}+\cdots+n^{3}+(n+1)^{3}=\left(\frac{n(n+1)}{2}\right)^{2}+(n+1)^{3}=\frac{1}{4}(n+1)^{2}\left(n^{2}+4(n+1)\right) \\
&=\frac{1}{4}(n+1)^{2}(n+2)^{2}=\left(\frac{(n+1)(n+2)}{2}\right)^{2}=(1+2+\cdots+n+(n+1))^{2} .
\end{aligned}
$$

Thus the induction step is also proven, and the claim is true.
1.8 The principle of mathematical induction can be extended as follows. A list P_{m}, P_{m+1}, \ldots of propositions is true provided (i) P_{m} is true, (ii) P_{n+1} is true whenever P_{n} is true and $n \geq m$.
(a) Prove $n^{2}>n+1$ for all integers $n \geq 2$.
(b) Prove $n!>n^{2}$ for all integers $n \geq 4$. [Recall $n!=n(n-1) \cdots 2 \cdot 1$; for example, $5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$.]

Solution. (a) The base case $2^{2}>2+1$ is true. Suppose the statement holds for some $n \geq 2$. We now prove the statement for $n+1$. We have

$$
(n+1)^{2}=n^{2}+2 n+1>n^{2}+1>(n+1)+1 .
$$

So the induction step is proven, and the claim is true.
(b) The base case $4!>4^{2}$ is true because $4!=24$ and $4^{2}=16$. Suppose the statement holds for some $n \geq 4$. We now prove the statement for $n+1$. We have

$$
(n+1)!=(n+1) n!>(n+1) n^{2}>(n+1)^{2},
$$

where the last step follows from (a). So the induction step is proven, and the claim is true.
1.9 (a) Decide for which integers the inequality $2^{n}>n^{2}$ is true.
(b) Prove your claim in (a) by mathematical induction.

Proof. (a) We observe that $2^{0}=1,0^{2}=0 ; 2^{1}=2,1^{2}=1 ; 2^{2}=4,2^{2}=4 ; 2^{3}=8$, $3^{2}=9 ; 2^{4}=16,4^{2}=16 ; 2^{5}=32,5^{2}=25 ; 2^{6}=64,6^{2}=36 ; 2^{7}=128,7^{2}=49$. For negative integers $n, 2^{n}<1$ and $n^{2} \geq 1$. So we conjecture that $2^{n}>n^{2}$ holds if and only if $n \in\{0,1\}$ or $n \geq 5$.
(b) We have excluded the case $n<0$ and checked the case $n=0,1,2,3,4$ one by one. We now show that $2^{n}>n^{2}$ for $n \geq 5$ by induction. The base case $2^{5}>5^{2}$ is also checked above. Suppose the statement holds for some $n \geq 5$. We now prove the statement for $n+1$. Note $n^{2}-2 n+1=(n-1)^{2}>2$ implies $n^{2}>2 n+1$. So

$$
2^{n+1}=2 \cdot 2^{n}>2 n^{2}=n^{2}+n^{2}>n^{2}+2 n+1=(n+1)^{2}
$$

So the induction step is proven, and the claim is true.
2.3 Show $\sqrt{2+\sqrt{2}}$ is not a rational number.

Solution. We see that if $a=\sqrt{2+\sqrt{2}}$, then we have $a^{2}=2+\sqrt{2}, a^{2}-2=\sqrt{2}$, and $\left(a^{2}-2\right)^{2}=2$. Expanding the formula, we see that a is a solution of the equation

$$
x^{4}-4 x^{4}+2=0
$$

If $a \in \mathbb{Q}$, then by a corollary of Rational Zeroes Theorem, a is an integer that divides 2 . So a must be one of $1,-1,2,-2$. Plugging these numbers into the equation, we see that none of them are roots. So a can not be a rational number.
2.4 Show $\sqrt[3]{5-\sqrt{3}}$ is not a rational number.

Solution. We now use a slightly different approach. First we show that $b=\sqrt{3}$ is not a rational number. Note that b solves the equation $x^{2}-3=0$. If $b \in \mathbb{Q}$, then by a corollary of Rational Zeroes Theorem, b is an integer that divides -3 . So b must be one of $1,-1,3,-3$. Plugging these numbers into the equation, we see that none of them are roots. So b can not be a rational number. Suppose now $a=\sqrt[3]{5-\sqrt{3}}$ is a rational number, say $\frac{c}{d}$. Then $5-\sqrt{3}=a^{3}=\frac{c^{3}}{d^{3}}$ is also a rational number, and so $\sqrt{3}=5-\frac{c^{3}}{d^{3}}$ is a rational number, which contradicts the first part of the proof. So a is also not a rational number.
2.7 Show the following irrational-looking expressions are actually rational numbers:

$$
\text { (a) } \sqrt{4+2 \sqrt{3}}-\sqrt{3}, \quad \text { (b) } \sqrt{6+4 \sqrt{2}}-\sqrt{2}
$$

Solution. (a) We observe that $(1+\sqrt{3})^{2}=1^{2}+2 \cdot 1 \cdot \sqrt{3}+(\sqrt{3})^{2}=1+2 \sqrt{3}+3=4+2 \sqrt{3}$. So $\sqrt{4+2 \sqrt{3}}=1+\sqrt{3}$, and $\sqrt{4+2 \sqrt{3}}-\sqrt{3}=1$.
(b) We observe that $(2+\sqrt{2})^{2}=2^{2}+2 \cdot 2 \cdot \sqrt{2}+(\sqrt{2})^{2}=4+4 \sqrt{2}+2=6+4 \sqrt{2}$. So $\sqrt{6+4 \sqrt{2}}=2+\sqrt{2}$, and $\sqrt{6+4 \sqrt{2}}-\sqrt{2}=2$.

