
Homework 1 Solutions

1.3 Prove 13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2 for all positive integers n.

Solution. We prove by induction. The base case 13 = 12 is true. Suppose the statement
holds for n. So

13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2 = (
n(n + 1)

2
)2,

where the second “=” follows from 1 + 2 + · · ·+n = n(n+1)
2 . We now prove the statement

for n + 1. By the displayed formula,

13 + 23 + · · ·+ n3 + (n + 1)3 = (
n(n + 1)

2
)2 + (n + 1)3 =

1

4
(n + 1)2(n2 + 4(n + 1))

=
1

4
(n + 1)2(n + 2)2 = (

(n + 1)(n + 2)

2
)2 = (1 + 2 + · · ·+ n + (n + 1))2.

Thus the induction step is also proven, and the claim is true.

1.8 The principle of mathematical induction can be extended as follows. A list Pm, Pm+1, . . .
of propositions is true provided (i) Pm is true, (ii) Pn+1 is true whenever Pn is true and
n ≥ m.

(a) Prove n2 > n + 1 for all integers n ≥ 2.

(b) Prove n! > n2 for all integers n ≥ 4. [Recall n! = n(n − 1) · · · 2 · 1; for example,
5! = 5 · 4 · 3 · 2 · 1 = 120.]

Solution. (a) The base case 22 > 2 + 1 is true. Suppose the statement holds for some
n ≥ 2. We now prove the statement for n + 1. We have

(n + 1)2 = n2 + 2n + 1 > n2 + 1 > (n + 1) + 1.

So the induction step is proven, and the claim is true.

(b) The base case 4! > 42 is true because 4! = 24 and 42 = 16. Suppose the statement
holds for some n ≥ 4. We now prove the statement for n + 1. We have

(n + 1)! = (n + 1)n! > (n + 1)n2 > (n + 1)2,

where the last step follows from (a). So the induction step is proven, and the claim is
true.

1.9 (a) Decide for which integers the inequality 2n > n2 is true.

(b) Prove your claim in (a) by mathematical induction.
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Proof. (a) We observe that 20 = 1, 02 = 0; 21 = 2, 12 = 1; 22 = 4, 22 = 4; 23 = 8,
32 = 9; 24 = 16, 42 = 16; 25 = 32, 52 = 25; 26 = 64, 62 = 36; 27 = 128, 72 = 49. For
negative integers n, 2n < 1 and n2 ≥ 1. So we conjecture that 2n > n2 holds if and only
if n ∈ {0, 1} or n ≥ 5.

(b) We have excluded the case n < 0 and checked the case n = 0, 1, 2, 3, 4 one by one.
We now show that 2n > n2 for n ≥ 5 by induction. The base case 25 > 52 is also checked
above. Suppose the statement holds for some n ≥ 5. We now prove the statement for
n + 1. Note n2 − 2n + 1 = (n− 1)2 > 2 implies n2 > 2n + 1. So

2n+1 = 2 · 2n > 2n2 = n2 + n2 > n2 + 2n + 1 = (n + 1)2.

So the induction step is proven, and the claim is true.

2.3 Show
√

2 +
√

2 is not a rational number.

Solution. We see that if a =
√

2 +
√

2, then we have a2 = 2 +
√

2, a2 − 2 =
√

2, and
(a2 − 2)2 = 2. Expanding the formula, we see that a is a solution of the equation

x4 − 4x4 + 2 = 0.

If a ∈ Q, then by a corollary of Rational Zeroes Theorem, a is an integer that divides 2.
So a must be one of 1,−1, 2,−2. Plugging these numbers into the equation, we see that
none of them are roots. So a can not be a rational number.

2.4 Show
3
√

5−
√

3 is not a rational number.

Solution. We now use a slightly different approach. First we show that b =
√

3 is not
a rational number. Note that b solves the equation x2 − 3 = 0. If b ∈ Q, then by a
corollary of Rational Zeroes Theorem, b is an integer that divides −3. So b must be one
of 1,−1, 3,−3. Plugging these numbers into the equation, we see that none of them are

roots. So b can not be a rational number. Suppose now a =
3
√

5−
√

3 is a rational
number, say c

d . Then 5−
√

3 = a3 = c3

d3
is also a rational number, and so

√
3 = 5− c3

d3
is a

rational number, which contradicts the first part of the proof. So a is also not a rational
number.

2.7 Show the following irrational-looking expressions are actually rational numbers:

(a)

√
4 + 2

√
3−
√

3, (b)

√
6 + 4

√
2−
√

2.

Solution. (a) We observe that (1+
√

3)2 = 12 +2 ·1 ·
√

3+(
√

3)2 = 1+2
√

3+3 = 4+2
√

3.

So
√

4 + 2
√

3 = 1 +
√

3, and
√

4 + 2
√

3−
√

3 = 1.

(b) We observe that (2 +
√

2)2 = 22 + 2 · 2 ·
√

2 + (
√

2)2 = 4 + 4
√

2 + 2 = 6 + 4
√

2. So√
6 + 4

√
2 = 2 +

√
2, and

√
6 + 4

√
2−
√

2 = 2.
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