Homework 2 (due on $9 / 13$)

Read Sections 5, 7,8,9 for the next week.
3.3 Prove (iv) and (v) of Theorem 3.1.
(iv) $(-a)(-b)=a b$ for all a, b;
(v) $a c=b c$ and $c \neq 0$ imply $a=b$.
3.4 Prove (v) and (vii) of Theorem 3.2.
(v) $0<1$;
(vii) If $0<a<b$, then $0<b^{-1}<a^{-1}$.

Remark. For the above problems, your proofs should not use anything other than the axioms and the statements of Theorem 3.1/Theorem 3.2 that have been proved.
3.7 (a) Show $|b|<a$ if and only if $-a<b<a$.
(b) Show $|a-b|<c$ if and only if $b-c<a<b+c$.
(c) Show $|a-b| \leq c$ if and only if $b-c \leq a \leq b+c$.
4.5 Let S be a nonempty subset of \mathbb{R} that is bounded above. Prove if $\sup S$ belongs to S, then $\sup S=\max S$. Hint: Your proof should be very short.
$4.6 \& 5.5$ Let S be a nonempty subset of \mathbb{R}.
(a) Prove $\inf S \leq \sup S$. Note: You must consider all cases: S may or may not be bounded above, and may or may not be bounded below.
(b) What can you say about S if $\inf S=\sup S$?

E1 Show that for any finite nonempty set $S \subset \mathbb{R}, \max S$ exists. Hint: Prove by induction on $|S|$, i.e., the number of elements of S.

E2 Let $a, b \in \mathbb{R}$ and $a<b$. Show that $\inf (a, b]=a$.

