Homework 2 (due on 9/13)

Read Sections 5,7,8,9 for the next week.

- 3.3 Prove (iv) and (v) of Theorem 3.1.
 - (iv) (-a)(-b) = ab for all a, b;
 - (v) ac = bc and $c \neq 0$ imply a = b.
- 3.4 Prove (v) and (vii) of Theorem 3.2.
 - (v) 0 < 1;
 - (vii) If 0 < a < b, then $0 < b^{-1} < a^{-1}$.

Remark. For the above problems, your proofs should not use anything other than the axioms and the statements of Theorem 3.1/Theorem 3.2 that have been proved.

- 3.7 (a) Show |b| < a if and only if -a < b < a.
 - (b) Show |a b| < c if and only if b c < a < b + c.
 - (c) Show $|a b| \le c$ if and only if $b c \le a \le b + c$.
- 4.5 Let S be a nonempty subset of \mathbb{R} that is bounded above. Prove if $\sup S$ belongs to S, then $\sup S = \max S$. Hint: Your proof should be very short.

4.6 & 5.5 Let S be a nonempty subset of \mathbb{R} .

- (a) Prove $\inf S \leq \sup S$. Note: You must consider all cases: S may or may not be bounded above, and may or may not be bounded below.
- (b) What can you say about S if $\inf S = \sup S$?
- E1 Show that for any finite nonempty set $S \subset \mathbb{R}$, max S exists. Hint: Prove by induction on |S|, i.e., the number of elements of S.
- E2 Let $a, b \in \mathbb{R}$ and a < b. Show that $\inf(a, b] = a$.