Homework 2 Solutions

3.3 Prove (iv) and (v) of Theorem 3.1.
(iv) $(-a)(-b)=a b$ for all a, b;
(v) $a c=b c$ and $c \neq 0$ imply $a=b$.

Solutions. (iv) By A2, DL, and (ii), $(-a)(-b)+(-a) b=(-a) b+(-a)(-b)=(-a)(b+$ $(-b))=(-a) \cdot 0=0$. By M2, DL, and (ii), $a b+(-a) b=b a+b(-a)=b(a+(-a))=b \cdot 0=0$. So $(-a)(-b)+(-a) b=a b+(-a) b$. By (i) we conclude $(-a)(-b)=a b$.
(v) $a c=b c$ implies $(a c) c^{-1}=(b c) c^{-1}$. By M1 and M3, $(a c) c^{-1}=a\left(c c^{-1}\right)=a \cdot 1=a$ and $(b c) c^{-1}=b\left(c c^{-1}\right)=b \cdot 1=b$. So $a=b$.
3.4 Prove (v) and (vii) of Theorem 3.2.
(v) $0<1$;
(vii) If $0<a<b$, then $0<b^{-1}<a^{-1}$;

Solution. (v) By M3 and Theorem 3.2 (iv), $1=1 \cdot 1=1^{2} \geq 0$. It now suffices to show that $1 \neq 0$. We prove this statement by contradiction, and use the assumption that a field contains more than one element. Suppose $1=0$. Then for any x in the field, by M3 and Theorem 3.1 (ii), $x=x \cdot 1=x \cdot 0=0$. Then the field has only one element: 0 , a contradiction.
(vii) By Theorem 3.2 (vi), $a^{-1}, b^{-1}>0$. We now show $b^{-1}<a^{-1}$ by contradiction. Suppose it fails. Then $a^{-1} \leq b^{-1}$. By O5, $a^{-1}(a b) \leq b^{-1}(a b)$. By M1, M2, M3 and M4, $b=a^{-1}(a b)$ and $a=b^{-1}(a b)$. So we get $b \leq a$, which contradicts that $a<b$.
3.7 (a) Show $|b|<a$ if and only if $-a<b<a$.
(b) Show $|a-b|<c$ if and only if $b-c<a<b+c$.
(c) Show $|a-b| \leq c$ if and only if $b-c \leq a \leq b+c$.

Solution. (a) Suppose $|b|<a$. Since $|b| \geq 0$ by Theorem 3.5 (i), we get $a>0$ by O2 and O3. By Theorem 3.2 (i), $-a<0$. If $b \geq 0$, then $b=|b|<a$ and $-a<0 \leq b$. So $-a<b<a$. If $b \leq 0$, then $-b=|b|<a$. By Theorem 3.2 (i), $-a<b$. Since $b \leq 0<a$, again we get $-a<b<a$. Now suppose $-a<b<a$. By Theorem 3.2 (i), $-a<-b<a$. Since $|b|$ equals either b or $-b$, we get $|b|<a$.
(b) By (a), $|a-b|<c$ iff $-c<a-b<c$, which is further equivalent to $b-c<a<b+c$ by O4.
(c) We first show that $|b| \leq a$ iff $-a \leq b \leq a$. We may simply repeat the proof of (a) with all " $<$ " and ">" replaced by " \leq " and " \geq ", respectively. Then we repeat the proof of (b) with the same modification.
4.5 Let S be a nonempty subset of \mathbb{R} that is bounded above. Prove if $\sup S$ belongs to S, then $\sup S=\max S$. Hint: Your proof should be very short.

Solution. Recall that $\sup S$ is the least upper bound of S. So $\sup S$ is an upper bound of S. This means that for any $s \in S, s \leq \sup S$. Since $\sup S \in S$, it satisfies the property of $\max S$, and so must be $\max S$.
4.6 Let S be a nonempty bounded subset of \mathbb{R}.
(a) Prove $\inf S \sup S$. Hint: This is almost obvious; your proof should be short.
(b) What can you say about S if $\inf S=\sup S$?

Solution. (a) Since $\inf S$ is a lower bound of S, and $\sup S$ is an upper bound of S, for any $s_{0} \in S$, we have $\inf S \leq s_{0}$ and $s_{0} \leq \sup S$. By O3, $\inf S \leq \sup S$.
(b) From (a), we know that for any $s \in S$, $\inf S \leq s \leq \sup S$. If $\inf S=\sup S$, then s has to be equal to $\inf S$. This means that S contains only one element.

E1 Show that for any nonempty finite subset S of $\mathbb{R}, \max S$ exists. Hint: Prove by induction on $|S|$, i.e., the number of elements of S.

Solution. Since S is nonempty and finite, we have $|S| \in \mathbb{N}$. We rewrite the statement as: for any $n \in \mathbb{N}$, if $|S|=n$, then $\max S$ exists. If $n=1, S$ contains only one element, say s. Then $s=\max S$. Suppose the statement holds true for n. We now show that it is also true for $n+1$. Let S satisfy $|S|=n+1$. Take any $s_{0} \in S$. Let $S^{\prime}=S \backslash\left\{s_{0}\right\}$. Then $\left|S^{\prime}\right|=n$. By induction hypothesis, max S^{\prime} exists. This means that there is $s^{\prime} \in S^{\prime}$ such that for any $s \in S^{\prime}, s \leq s^{\prime}$. Now either $s_{0} \leq s^{\prime}$ or $s^{\prime} \leq s_{0}$. If $s_{0} \leq s^{\prime}$, then $s \leq s^{\prime}$ for any $s \in S$, so $\max S=s^{\prime}$. If $s^{\prime} \leq s_{0}$, then for any $s \in S^{\prime}, s \leq s_{0}$. Since $S=S^{\prime} \cup\left\{s_{0}\right\}$, we get $\max S=s_{0}$. This finishes the induction step. So the statement holds for all $n \in \mathbb{N}$.

