Homework 2 Solutions

3.3

3.4

(vii)

3.7

Prove (iv) and (v) of Theorem 3.1.

(iv) (—a)(—b) = ab for all a, b;
(v) ac =bc and ¢ # 0 imply a = b.

Solutions. (iv) By A2, DL, and (ii), (—a)(=b) + (—a)b = (—a)b + (—a)(=b) = (—a)(b +
(=b)) = (—a)-0 =0. By M2, DL, and (ii), ab+(—a)b = ba+b(—a) = b(a+(—a)) = b-0 = 0.
So (—a)(=b) + (—a)b = ab+ (—a)b. By (i) we conclude (—a)(—b) = ab.

(v) ac = be implies (ac)c™! = (be)e™ . By M1 and M3, (ac)c™! = a(cc™!) =a-1=a and
(be)e ™t =blecc ) =b-1=b. Soa=0b. O

Prove (v) and (vii) of Theorem 3.2.
0<1;

Ifo<a<b then0<b !t <al;

Solution. (v) By M3 and Theorem 3.2 (iv), 1 = 1-1 = 12 > 0. It now suffices to show
that 1 £ 0. We prove this statement by contradiction, and use the assumption that a
field contains more than one element. Suppose 1 = 0. Then for any x in the field, by M3
and Theorem 3.1 (ii), x = 2 -1 = x -0 = 0. Then the field has only one element: 0, a
contradiction.

(vii) By Theorem 3.2 (vi), a= 1,671 > 0. We now show b~! < a~! by contradiction.
Suppose it fails. Then a=! < b~1. By 05, a~(ab) < b~!(ab). By M1, M2, M3 and M4,
b=a"'(ab) and a = b~!(ab). So we get b < a, which contradicts that a < b. O

(a) Show |b| < a if and only if —a < b < a.
(b) Show |a —b| < cifand only if b—c<a <b+c.
(¢) Show |a —b| < cifand only if b—c<a <b+ec.

Solution. (a) Suppose |[b| < a. Since |b| > 0 by Theorem 3.5 (i), we get a > 0 by 02
and O3. By Theorem 3.2 (i), —a < 0. If b > 0, then b = [b| < @ and —a < 0 < b. So
—a <b<a. Ifb<0,then—b=|b| < a. By Theorem 3.2 (i), —a < b. Since b < 0 < a,
again we get —a < b < a. Now suppose —a < b < a. By Theorem 3.2 (i), —a < —b < a.
Since |b| equals either b or —b, we get |b]| < a.

(b) By (a), |[a —b| < ¢ iff —c < a —b < ¢, which is further equivalent to b —c < a < b+ ¢
by OA4.

(c) We first show that |b] < a iff —a < b < a. We may simply repeat the proof of (a) with
all “<” and “>" replaced by “<” and “>", respectively. Then we repeat the proof of (b)
with the same modification. O



4.5

4.6

El

Let S be a nonempty subset of R that is bounded above. Prove if sup S belongs to S,
then sup S = max S. Hint: Your proof should be very short.

Solution. Recall that sup S is the least upper bound of S. So sup S is an upper bound of
S. This means that for any s € S, s < sup.S. Since sup S € S, it satisfies the property of
max S, and so must be max .S. O

Let S be a nonempty bounded subset of R.

(a) Prove inf Ssup S. Hint: This is almost obvious; your proof should be short.

(b) What can you say about S if inf S = sup S?

Solution. (a) Since inf S is a lower bound of S, and sup S is an upper bound of S, for any
sop € 5, we have inf S < 59 and sp <supS. By O3, inf S <sup §S.

(b) From (a), we know that for any s € S, inf S < s <sup S. If inf § = sup S, then s has
to be equal to inf §. This means that S contains only one element. O

Show that for any nonempty finite subset .S of R, max .S exists. Hint: Prove by induction
on |S], i.e., the number of elements of S.

Solution. Since S is nonempty and finite, we have |S| € N. We rewrite the statement as:
for any n € N, if |S| = n, then max S exists. If n = 1, S contains only one element, say
s. Then s = max S. Suppose the statement holds true for n. We now show that it is also
true for n + 1. Let S satisfy |S| = n 4+ 1. Take any s9 € S. Let S’ = S\ {so}. Then
|S’| = n. By induction hypothesis, max S” exists. This means that there is s’ € S’ such
that for any s € S, s < s’. Now either sg < s’ or s’ < sg. If s9 < ', then s < s’ for any
s €5, 80 maxS = s If s’ < 59, then for any s € S’ s < s59. Since S = 5" U {so}, we get
max S = sg. This finishes the induction step. So the statement holds for all n € N. O



