
Homework 2 Solutions

3.3 Prove (iv) and (v) of Theorem 3.1.

(iv) (−a)(−b) = ab for all a, b;

(v) ac = bc and c 6= 0 imply a = b.

Solutions. (iv) By A2, DL, and (ii), (−a)(−b) + (−a)b = (−a)b + (−a)(−b) = (−a)(b +
(−b)) = (−a)·0 = 0. By M2, DL, and (ii), ab+(−a)b = ba+b(−a) = b(a+(−a)) = b·0 = 0.
So (−a)(−b) + (−a)b = ab + (−a)b. By (i) we conclude (−a)(−b) = ab.

(v) ac = bc implies (ac)c−1 = (bc)c−1. By M1 and M3, (ac)c−1 = a(cc−1) = a · 1 = a and
(bc)c−1 = b(cc−1) = b · 1 = b. So a = b.

3.4 Prove (v) and (vii) of Theorem 3.2.

(v) 0 < 1;

(vii) If 0 < a < b, then 0 < b−1 < a−1;

Solution. (v) By M3 and Theorem 3.2 (iv), 1 = 1 · 1 = 12 ≥ 0. It now suffices to show
that 1 6= 0. We prove this statement by contradiction, and use the assumption that a
field contains more than one element. Suppose 1 = 0. Then for any x in the field, by M3
and Theorem 3.1 (ii), x = x · 1 = x · 0 = 0. Then the field has only one element: 0, a
contradiction.

(vii) By Theorem 3.2 (vi), a−1, b−1 > 0. We now show b−1 < a−1 by contradiction.
Suppose it fails. Then a−1 ≤ b−1. By O5, a−1(ab) ≤ b−1(ab). By M1, M2, M3 and M4,
b = a−1(ab) and a = b−1(ab). So we get b ≤ a, which contradicts that a < b.

3.7 (a) Show |b| < a if and only if −a < b < a.

(b) Show |a− b| < c if and only if b− c < a < b + c.

(c) Show |a− b| ≤ c if and only if b− c ≤ a ≤ b + c.

Solution. (a) Suppose |b| < a. Since |b| ≥ 0 by Theorem 3.5 (i), we get a > 0 by O2
and O3. By Theorem 3.2 (i), −a < 0. If b ≥ 0, then b = |b| < a and −a < 0 ≤ b. So
−a < b < a. If b ≤ 0, then−b = |b| < a. By Theorem 3.2 (i), −a < b. Since b ≤ 0 < a,
again we get −a < b < a. Now suppose −a < b < a. By Theorem 3.2 (i), −a < −b < a.
Since |b| equals either b or −b, we get |b| < a.

(b) By (a), |a− b| < c iff −c < a− b < c, which is further equivalent to b− c < a < b + c
by O4.

(c) We first show that |b| ≤ a iff −a ≤ b ≤ a. We may simply repeat the proof of (a) with
all “<” and “>” replaced by “≤” and “≥”, respectively. Then we repeat the proof of (b)
with the same modification.
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4.5 Let S be a nonempty subset of R that is bounded above. Prove if supS belongs to S,
then supS = maxS. Hint: Your proof should be very short.

Solution. Recall that supS is the least upper bound of S. So supS is an upper bound of
S. This means that for any s ∈ S, s ≤ supS. Since supS ∈ S, it satisfies the property of
maxS, and so must be maxS.

4.6 Let S be a nonempty bounded subset of R.

(a) Prove inf S supS. Hint: This is almost obvious; your proof should be short.

(b) What can you say about S if inf S = supS?

Solution. (a) Since inf S is a lower bound of S, and supS is an upper bound of S, for any
s0 ∈ S, we have inf S ≤ s0 and s0 ≤ supS. By O3, inf S ≤ supS.

(b) From (a), we know that for any s ∈ S, inf S ≤ s ≤ supS. If inf S = supS, then s has
to be equal to inf S. This means that S contains only one element.

E1 Show that for any nonempty finite subset S of R, maxS exists. Hint: Prove by induction
on |S|, i.e., the number of elements of S.

Solution. Since S is nonempty and finite, we have |S| ∈ N. We rewrite the statement as:
for any n ∈ N, if |S| = n, then maxS exists. If n = 1, S contains only one element, say
s. Then s = maxS. Suppose the statement holds true for n. We now show that it is also
true for n + 1. Let S satisfy |S| = n + 1. Take any s0 ∈ S. Let S′ = S \ {s0}. Then
|S′| = n. By induction hypothesis, maxS′ exists. This means that there is s′ ∈ S′ such
that for any s ∈ S′, s ≤ s′. Now either s0 ≤ s′ or s′ ≤ s0. If s0 ≤ s′, then s ≤ s′ for any
s ∈ S, so maxS = s′. If s′ ≤ s0, then for any s ∈ S′, s ≤ s0. Since S = S′ ∪ {s0}, we get
maxS = s0. This finishes the induction step. So the statement holds for all n ∈ N.

2


