Homework 3 (due on 9/20)

- Read Sections 9 and 10 for the next week.
- We are going to have the first Quiz held on 9/16.
$4.7 \& 5.6$ Let S and T be nonempty subsets of \mathbb{R}.
(a) Prove if $S \subseteq T$, then $\inf T \leq \inf S \leq \sup S \leq \sup T$.
(b) Prove $\sup (S \cup T)=\max \{\sup S, \sup T\}$.

Note: S and T may or may not be bounded above or below. In part (b), do not assume $S \subseteq T$, and we understand $\max \{+\infty, x\}=\max \{+\infty,+\infty\}=+\infty$ for any $x \in \mathbb{R}$.
4.18 Let S and T be nonempty subsets of \mathbb{R} with the following property: $s \leq t$ for all $s \in S$ and $t \in T$.
(a) Observe S is bounded above and T is bounded below.
(b) Prove $\sup S \leq \inf T$.
(c) Give an example of such sets S and T where $S \cap T$ is nonempty.
(d) Give an example of sets S and T where $\sup S=\inf T$ and $S \cap T$ is the empty set.
4.12 The elements of $\mathbb{R} \backslash \mathbb{Q}$ are called irrational numbers. Prove if $a<b$, then there exists $x \in \mathbb{R} \backslash \mathbb{Q}$ such that $a<x<b$. Hint: First show $\{r+\sqrt{2}: r \in \mathbb{Q}\} \subseteq \mathbb{R} \backslash \mathbb{Q}$.
4.15 Let $a, b \in \mathbb{R}$. Show if $a \leq b+\frac{1}{n}$ for all $n \in \mathbb{N}$, then $a \leq b$. Compare Exercise 3.8.
4.16 Show $\sup \{r \in \mathbb{Q}: r<a\}=a$ for each $a \in \mathbb{R}$.
8.1 (a) Prove $\lim \frac{(-1)^{n}}{n}=0$.
8.2 (e) Determine the limit of the sequence $s_{n}=\frac{1}{n} \sin n$, and then prove your claim. You may use any fact about $\sin x$ that you learned before.
8.3 Let $\left(s_{n}\right)$ be a sequence of nonnegative real numbers, and suppose $\lim s_{n}=0$. Prove $\lim \sqrt{s_{n}}=0$. This will complete the proof for Example 5.
9.1 (c) Using the limit Theorems 9.2-9.7, prove the following. Justify all steps.

$$
\lim _{n \rightarrow \infty} \frac{17 n^{5}+73 n^{4}-18 n^{2}+3}{23 n^{5}+13 n^{3}}=\frac{17}{23} .
$$

9.5 Let $t_{1}=1$ and $t_{n+1}=\frac{t_{n}^{2}+2}{2 t_{n}}$ for $n \geq 1$. Assume $\left(t_{n}\right)$ converges and find the limit. Hint: You are not required to prove the convergence of $\left(t_{n}\right)$. You may use the simple fact that when $\left(t_{n}\right)$ converges, the sequence $\left(t_{n+1}\right)$ converges to the same number.

