Homework 6 Solutions

14.1 (e) Determine the convergence of $\sum \frac{\cos ^{2} n}{n^{2}}$ and justify your answer.

Solution. Since $\left|\cos ^{2} n\right|=|\cos n|^{2} \leq 1$, we have $\left|\frac{\cos ^{2} n}{n^{2}}\right| \leq \frac{1}{n^{2}}$. Since $\sum \frac{1}{n^{2}}$ converges, by comparison test, $\sum \frac{\cos ^{2} n}{n^{2}}$ also converges.
14.2 (a) Determine the convergence of $\sum \frac{n-1}{n^{2}}$ and justify your answer.

Solution. The series is divergent. We observe that $\frac{n-1}{n^{2}}$ is approximately equal to $\frac{1}{n}$, and we know that $\sum \frac{1}{n}$ diverges. In order to show that $\sum \frac{n-1}{n^{2}}$ diverges, we compare $\frac{n-1}{n^{2}}$ with $\frac{1}{2 n}$. Note that $\frac{n-1}{n^{2}} \geq \frac{1}{2 n}$ is equivalent to that $2 n(n-1) \geq n^{2}$, i.e., $n^{2} \geq 2 n$. So if $n \geq 2$, then $\frac{n-1}{n^{2}} \geq \frac{1}{2 n}$. Since $\sum \frac{1}{n}$ diverges, $\sum \frac{1}{2 n}$ also diverges. By comparison test, $\sum \frac{n-1}{n^{2}}$ also diverges.
There is another way to show that the series diverges. We know that $\sum \frac{1}{n^{2}}$ converges. If $\sum \frac{n-1}{n^{2}}$ also converges, then $\sum\left(\frac{1}{n^{2}}+\frac{n-1}{n^{2}}\right)=\sum \frac{1}{n}$ would converge, which is a contradiction.
14.4 (c) Determine the convergence of $\sum \frac{n!}{n^{n}}$ and justify your answer. Hint: You may use the limit $\left(1+\frac{1}{n}\right)^{n} \rightarrow e \approx 2.71828$.

Proof. We use the ratio test. We compute

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\frac{(n+1)!}{(n+1)^{n+1}} \frac{n!}{n^{n}}}{=} \frac{(n+1)!n^{n}}{n!(n+1)^{n+1}}=\frac{(n+1) n^{n}}{(n+1)^{n+1}}=\frac{n^{n}}{(n+1)^{n}}=\frac{1}{(1+1 / n)^{n}} \rightarrow \frac{1}{e}<1
$$

Since $\lim \left|\frac{a_{n+1}}{a_{n}}\right|<1$, by ratio test, the series converges.
14.7 Prove that if $\sum a_{n}$ is a convergent series of nonnegative numbers and $p>1$, then $\sum a_{n}^{p}$ converges. Hint: You may use the fact that if $0 \leq a<1$ and $p>1$, then $a^{p} \leq a$.

Proof. Since $\sum a_{n}$ converges, we have $a_{n} \rightarrow 0$. So there is $N \in \mathbb{N}$ such that for $n>N$, $\left|a_{n}-0\right|<1$. Since $a_{n} \geq 0$, we get $0 \leq a_{n}<1$ for $n>N$. Since $p>1$, we have $0 \leq a_{n}^{p} \leq a_{n}$ for $n>N$. Since $\sum a_{n}$ converges, by comparison test, $\sum a_{n}^{p}$ also converges.
14.13 (b) Prove $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1$. Hint: Use $\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$.
(c) Prove $\sum_{n=1}^{\infty} \frac{n-1}{2^{n+1}}=\frac{1}{2}$. Hint: Note $\frac{n-1}{2^{n+1}}=\frac{n}{2^{n}}-\frac{n+1}{2^{n+1}}$.
(d) Use (c) to calculate $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$.

Proof. (b) We first calculate the partial sum sequence. For any $N \in \mathbb{N}$,

$$
\sum_{n=1}^{N} \frac{1}{n(n+1)}=\sum_{n=1}^{N}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{N}-\frac{1}{N+1}\right)=1-\frac{1}{N+1}
$$

Note that there are many cancelations. Since $\frac{1}{n+1} \rightarrow 0$, we get

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{1}{n(n+1)}=\lim _{N \rightarrow \infty}\left(1-\frac{1}{N+1}\right)=1-0=1
$$

(c) Using that $\frac{n-1}{2^{n+1}}=\frac{n}{2^{n}}-\frac{n+1}{2^{n+1}}$, we can calculate the partial sum sequence:
$\sum_{n=1}^{N} \frac{n-1}{2^{n+1}}=\sum_{n=1}^{N}\left(\frac{n}{2^{n}}-\frac{n+1}{2^{n+1}}\right)=\left(\frac{1}{2^{1}}-\frac{2}{2^{2}}\right)+\left(\frac{2}{2^{2}}-\frac{3}{2^{3}}\right)+\cdots+\left(\frac{N}{2^{N}}-\frac{N+1}{2^{N+1}}\right)=\frac{1}{2}-\frac{N+1}{2^{N+1}}$.
We now show that $\frac{N}{2^{N}} \rightarrow 0$. This actually follows from ratio test. Note that $\frac{N+1}{2^{N+1}} / \frac{N}{2^{N}}=$ $\frac{N+1}{2 N} \rightarrow \frac{1}{2}$. By ratio test, $\sum \frac{N}{2^{N}}$ converges, which then implies that $\frac{N}{2^{N}} \rightarrow 0$. Thus,

$$
\sum_{n=1}^{\infty} \frac{n-1}{2^{n+1}}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{n-1}{2^{n+1}}=\lim _{N \rightarrow \infty}\left(\frac{1}{2}-\frac{N+1}{2^{N+1}}\right)=\frac{1}{2}
$$

(d) From (c), we get $\sum_{n=1}^{\infty} \frac{n-1}{2^{n}}=1$. We learned in class that for $r \in \mathbb{R}$ with $|r|<1$, $\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}$, which implies that $\sum_{n=1}^{\infty} r^{n}=\frac{1}{1-r}-1=\frac{r}{1-r}$. Taking $r=\frac{1}{2}$, we get $\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1$. So

$$
\sum_{n=1}^{\infty} \frac{n}{2^{n}}=\sum_{n=1}^{\infty} \frac{n-1}{2^{n}}+\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1+2=2
$$

