
Homework 6 Solutions

14.1 (e) Determine the convergence of
∑ cos2 n

n2 and justify your answer.

Solution. Since | cos2 n| = | cosn|2 ≤ 1, we have | cos2 n
n2 | ≤ 1

n2 . Since
∑ 1

n2 converges, by

comparison test,
∑ cos2 n

n2 also converges.

14.2 (a) Determine the convergence of
∑ n−1

n2 and justify your answer.

Solution. The series is divergent. We observe that n−1
n2 is approximately equal to 1

n , and
we know that

∑ 1
n diverges. In order to show that

∑ n−1
n2 diverges, we compare n−1

n2 with
1
2n . Note that n−1

n2 ≥ 1
2n is equivalent to that 2n(n− 1) ≥ n2, i.e., n2 ≥ 2n. So if n ≥ 2,

then n−1
n2 ≥ 1

2n . Since
∑ 1

n diverges,
∑ 1

2n also diverges. By comparison test,
∑ n−1

n2 also
diverges.

There is another way to show that the series diverges. We know that
∑ 1

n2 converges. If∑ n−1
n2 also converges, then

∑
( 1
n2 + n−1

n2 ) =
∑ 1

n would converge, which is a contradiction.

14.4 (c) Determine the convergence of
∑ n!

nn and justify your answer. Hint: You may use the
limit (1 + 1

n)n → e ≈ 2.71828.

Proof. We use the ratio test. We compute

|an+1

an
| =

(n+1)!
(n+1)n+1

n!
nn

=

(n + 1)!nn

n!(n + 1)n+1
=

(n + 1)nn

(n + 1)n+1
=

nn

(n + 1)n
=

1

(1 + 1/n)n
→ 1

e
< 1.

Since lim |an+1

an
| < 1, by ratio test, the series converges.

14.7 Prove that if
∑

an is a convergent series of nonnegative numbers and p > 1, then
∑

apn
converges. Hint: You may use the fact that if 0 ≤ a < 1 and p > 1, then ap ≤ a.

Proof. Since
∑

an converges, we have an → 0. So there is N ∈ N such that for n > N ,
|an−0| < 1. Since an ≥ 0, we get 0 ≤ an < 1 for n > N . Since p > 1, we have 0 ≤ apn ≤ an
for n > N . Since

∑
an converges, by comparison test,

∑
apn also converges.

14.13 (b) Prove
∑∞

n=1
1

n(n+1) = 1. Hint: Use 1
n(n+1) = 1

n −
1

n+1 .

(c) Prove
∑∞

n=1
n−1
2n+1 = 1

2 . Hint: Note n−1
2n+1 = n

2n −
n+1
2n+1 .

(d) Use (c) to calculate
∑∞

n=1
n
2n .
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Proof. (b) We first calculate the partial sum sequence. For any N ∈ N,

N∑
n=1

1

n(n + 1)
=

N∑
n=1

(
1

n
− 1

n + 1
) = (1− 1

2
) + (

1

2
− 1

3
) + · · ·+ (

1

N
− 1

N + 1
) = 1− 1

N + 1
.

Note that there are many cancelations. Since 1
n+1 → 0, we get

∞∑
n=1

1

n(n + 1)
= lim

N→∞

N∑
n=1

1

n(n + 1)
= lim

N→∞
(1− 1

N + 1
) = 1− 0 = 1.

(c) Using that n−1
2n+1 = n

2n −
n+1
2n+1 , we can calculate the partial sum sequence:

N∑
n=1

n− 1

2n+1
=

N∑
n=1

( n

2n
−n + 1

2n+1

)
=
( 1

21
− 2

22

)
+
( 2

22
− 3

23

)
+· · ·+

( N

2N
−N + 1

2N+1

)
=

1

2
−N + 1

2N+1
.

We now show that N
2N
→ 0. This actually follows from ratio test. Note that N+1

2N+1 /
N
2N

=
N+1
2N → 1

2 . By ratio test,
∑ N

2N
converges, which then implies that N

2N
→ 0. Thus,

∞∑
n=1

n− 1

2n+1
= lim

N→∞

N∑
n=1

n− 1

2n+1
= lim

N→∞

(1

2
− N + 1

2N+1

)
=

1

2
.

(d) From (c), we get
∑∞

n=1
n−1
2n = 1. We learned in class that for r ∈ R with |r| < 1,∑∞

n=0 r
n = 1

1−r , which implies that
∑∞

n=1 r
n = 1

1−r − 1 = r
1−r . Taking r = 1

2 , we get∑∞
n=1

1
2n = 1. So

∞∑
n=1

n

2n
=
∞∑
n=1

n− 1

2n
+
∞∑
n=1

1

2n
= 1 + 2 = 2.
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