Homework 7 (due on 10/18)

- Read Sections 17 and 18 for the next week.
- Wednesday, October 16, 2019, is the last day to drop courses with no grade reported.
14.2 (b) Determine the convergence of $\sum(-1)^{n}$ and justify your answer.
14.3 (f) Determine the convergence of $\sum \frac{100^{n}}{n!}$ and justify your answer.
14.6 (a) Prove that if $\sum\left|a_{n}\right|$ converges and $\left(b_{n}\right)$ is a bounded sequence, then $\sum a_{n} b_{n}$ converges. Hint: Use Theorem 14.4.
14.12 Let $\left(a_{n}\right)$ be a sequence such that $\liminf \left|a_{n}\right|=0$. Prove that there is a subsequence $\left(a_{n_{k}}\right)$ such that $\sum a_{n_{k}}$ converges. Hint: First show that for any $r>0$, there are infinitely many n such that $\left|a_{n}\right|<r$. Use this to show that there is a subsequence $\left(a_{n_{k}}\right)$ such that $\left|a_{n_{k}}\right| \leq \frac{1}{2^{k}}$ for any $k \in \mathbb{N}$. The index sequence $\left(n_{k}\right)$ can be constructed by induction. Besides the inequality that we want, the (n_{k}) should also satisfy $n_{1}<n_{2}<n_{3}<\cdots$.

E1 Prove that for any $r>0, \frac{r^{n}}{n!} \rightarrow 0$ and $\frac{n!}{r^{n}} \rightarrow+\infty$. Hint: Use Ratio Test.
15.1 Determine which of the following series converge. Justify your answers.
(a) $\sum \frac{(-1)^{n}}{n}$;
(b) $\sum \frac{(-1)^{n} n!}{2^{n}}$.

