Homework 7 Solutions

14.2 (b) Determine the convergence of $\sum(-1)^{n}$ and justify your answer.

Solution. Since $\left|(-1)^{n}-0\right|=1$ for all $n \in \mathbb{N}$, we do not have $(-1)^{n} \rightarrow 0$. By limit test, $\sum(-1)^{n}$ diverges.
14.3 (f) Determine the convergence of $\sum \frac{100^{n}}{n!}$ and justify your answer.

Solution. We use ratio test. Note that for $a_{n}:=\frac{100^{n}}{n!}$,

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{100^{n+1} /(n+1)!}{100^{n} / n!}=\frac{100}{n+1} \rightarrow 0<1 .
$$

So the series converges by ratio test.
14.6 (a) Prove that if $\sum\left|a_{n}\right|$ converges and $\left(b_{n}\right)$ is a bounded sequence, then $\sum a_{n} b_{n}$ converges. Hint: Use Theorem 14.4.

Proof. Since $\sum\left|a_{n}\right|$ converges, by Theorem 14.4 it satisfies Cauchy criterion. Since (b_{n}) is bounded, there is $M \in \mathbb{R}$ with $M>0$ such that $\left|b_{n}\right| \leq M$ for any n. We are going to show that $\sum a_{n} b_{n}$ satisfies Cauchy criterion. Let $\varepsilon>0$. Then $\frac{\varepsilon}{M}>0$. Since $\sum\left|a_{n}\right|$ satisfies Cauchy criterion, there is $N \in \mathbb{N}$ such that for any $m \geq n>N, \sum_{k=n}^{m}\left|a_{k}\right|=$ $\left|\sum_{k=n}^{m}\right| a_{k}| |<\frac{\varepsilon}{M}$, which together with triangle inequality and the upper bound of $\left(b_{n}\right)$ implies that

$$
\left|\sum_{k=n}^{m} a_{k} b_{k}\right| \leq \sum_{k=n}^{m}\left|a_{k} b_{k}\right|=\sum_{k=n}^{m}\left|a_{k}\right|\left|b_{k}\right| \leq M \sum_{k=n}^{m}\left|a_{k}\right|<M \cdot \frac{\varepsilon}{M}=\varepsilon .
$$

So $\sum a_{n} b_{n}$ also satisfies Cauchy criterion, and so by Theorem 14.4 it converges.
14.12 Let $\left(a_{n}\right)$ be a sequence such that $\liminf \left|a_{n}\right|=0$. Prove that there is a subsequence $\left(a_{n_{k}}\right)$ such that $\sum a_{n_{k}}$ converges.

Proof. Let $u_{N}=\inf \left\{\left|a_{n}\right|: n>N\right\}, N \in \mathbb{N}$. Since $\left|a_{n}\right| \geq 0$ for every n, we have $u_{N} \geq 0$ for every N. Since $\left(u_{N}\right)$ is increasing and converges to $\lim \inf \left|a_{n}\right|=0$, we get $u_{N} \leq 0$ for every N. So $u_{N}=0$ for all $N \in \mathbb{N}$. For any $N \in \mathbb{N}$ and $r>0$, from $\inf \left\{\left|a_{n}\right|: n>N\right\}=0<r$ we see that there is $n>N$ such that $\left|a_{n}\right|<r$. So for any $r>0$, there are infinitely many n such that $\left|a_{n}\right|<r$. Taking $r=\frac{1}{2}$, this implies that there is $n_{1} \in \mathbb{N}$ such that $\left|a_{n_{1}}\right|<\frac{1}{2}$. We now construct a sequence $\left(n_{k}\right)$ inductively. When $n_{1}<\cdots<n_{k}$ are constructed, we use the fact that there are infinitely many n such that $\left|a_{n}\right|<\frac{1}{2^{k+1}}$ to find $n_{k+1}>n_{k}$ such that $\left|a_{n_{k+1}}\right|<\frac{1}{2^{k+1}}$. Such sequence $\left(n_{k}\right)$ then satisfies (i) $n_{1}<n_{2}<\cdots$; (ii) $\left|a_{n_{k}}\right| \leq \frac{1}{2^{k}}$ for every $k \in \mathbb{N}$. So $\left(a_{n_{k}}\right)$ is a subsequence of $\left(a_{n}\right)$. From comparison test and the convergence of $\sum \frac{1}{2^{k}}$ we conclude that $\sum a_{n_{k}}$ converges.

E1 Prove that for any $r>0, \frac{r^{n}}{n!} \rightarrow 0$ and $\frac{n!}{r^{n}} \rightarrow+\infty$. Hint: Use Ratio Test.
Proof. We first show that $\sum \frac{r^{n}}{n!}$ converges using ratio test. This is similar to 14.3 (f). Note that for $a_{n}:=\frac{r^{n}}{n!}$,

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{r^{n+1} /(n+1)!}{r^{n} / n!}=\frac{r}{n+1} \rightarrow 0<1 .
$$

So the series $\sum \frac{r^{n}}{n!}$ converges, which in turn implies that $\frac{r^{n}}{n!} \rightarrow 0$. Since $\frac{r^{n}}{n!}>0$, we then get $\frac{n!}{r^{n}} \rightarrow+\infty$.
15.1 Determine which of the following series converge. Justify your answers.

$$
\text { (a) } \sum \frac{(-1)^{n}}{n} ; \quad \text { (b) } \sum \frac{(-1)^{n} n!}{2^{n}} \text {. }
$$

Solution. Both series are have alternative signs. Since $\left|\frac{(-1)^{n}}{n}\right|=\frac{1}{n}$ is decreasing and tends to 0 , by alternative series test, $\sum \frac{(-1)^{n}}{n}$ converges. By the previous problem, we have $\left|\frac{(-1)^{n} n!}{2^{n}}\right|=\frac{n!}{2^{n}} \rightarrow+\infty$. So we do not have $\frac{(-1)^{n} n!}{2^{n}} \rightarrow 0$. By limit test, $\sum \frac{(-1)^{n} n!}{2^{n}}$ diverges.

