Homework 8 (due on 10/25)

- Read Sections 19 and 20 for the next week.
- We are going to have the second quiz on Monday, October 28. It covers the material we have learned up to the end of this week (10/18).
- 17.2 Let f(x) = 4 for $x \ge 0$, f(x) = 0 for x < 0, and $g(x) = x^2$ for all x. Thus dom $(f) = dom(g) = \mathbb{R}$.
 - (a) Determine the following functions: f + g, fg, $f \circ g$, $g \circ f$. Be sure to specify their domains.
 - (b) Which of the functions $f, g, f+g, fg, f \circ g, g \circ f$ is continuous?
- 17.3 Accept on faith that the following familiar functions are continuous on their domains: $\sin x$, $\cos x$, e^x , 2^x , $\log_e x$ for x > 0, x^p for x > 0 [p any real number]. Use these facts and theorems in this section to prove the following functions are also continuous. (b) $[\sin^2 x + \cos^6 x]^{\pi}$ (e) $\tan x$ for $x \neq$ odd multiple of $\frac{\pi}{2}$.
- 17.10 Prove the following functions are discontinuous at the indicated points. You may use either Definition 17.1 or the $\varepsilon \delta$ property in Theorem 17.2.
 - (a) f(x) = 1 for x > 0 and f(x) = 0 for $x \le 0, x_0 = 0$;
 - (b) $g(x) = \sin(\frac{1}{x})$ for $x \neq 0$ and $g(0) = 0, x_0 = 0$;
 - (c) sgn(x) = 1 for x > 0, sgn(x) = -1 for x < 0, and sgn(0) = 0, $x_0 = 0$.
- 17.12 (a) Let f be a continuous real-valued function with domain (a, b). Show that if f(r) = 0 for each rational number r in (a, b), then f(x) = 0 for all $x \in (a, b)$.
 - (b) Let f and g be continuous real-valued functions on (a, b) such that f(r) = g(r) for each rational number r in (a, b). Prove f(x) = g(x) for all $x \in (a, b)$. Hint: Use part (a).
- 18.2 Reread the proof of Theorem 18.1 (a continuous function reaches max and min) with [a, b] replaced by (a, b). Where does it break down? Discuss.
- 18.6 Prove $x = \cos x$ for some x in $(0, \frac{\pi}{2})$.
- 18.9 Prove that a polynomial function f of odd degree has at least one real root. Hint: You may assume that the leading term is $a_n x^n$, where n is the degree of the polynomial and $a_n > 0$. Then you may study the signs of f(m) and f(-m) for big $m \in \mathbb{N}$ by considering the limits of $f(m)/m^n$ and $f(-m)/m^n$ as $m \to \infty$.
- E1 Let f(x) = 0 for all $x \in \mathbb{Q}$ and f(x) = 1 for all $x \in \mathbb{R} \setminus \mathbb{Q}$. Show that f is not continuous at any $x \in \mathbb{R}$. Hint: Use the denseness of \mathbb{Q} (4.7) and the denseness of $\mathbb{R} \setminus \mathbb{Q}$ (Exercise 4.12).