Homework 8 (due on $10 / 25$)

- Read Sections 19 and 20 for the next week.
- We are going to have the second quiz on Monday, October 28. It covers the material we have learned up to the end of this week (10/18).
17.2 Let $f(x)=4$ for $x \geq 0, f(x)=0$ for $x<0$, and $g(x)=x^{2}$ for all x . Thus $\operatorname{dom}(f)=$ $\operatorname{dom}(g)=\mathbb{R}$.
(a) Determine the following functions: $f+g, f g, f \circ g, g \circ f$. Be sure to specify their domains.
(b) Which of the functions $f, g, f+g, f g, f \circ g, g \circ f$ is continuous?
17.3 Accept on faith that the following familiar functions are continuous on their domains: $\sin x, \cos x, e^{x}, 2^{x}, \log _{e} x$ for $x>0, x^{p}$ for $x>0[p$ any real number $]$. Use these facts and theorems in this section to prove the following functions are also continuous. (b) $\left[\sin ^{2} x+\cos ^{6} x\right]^{\pi}(\mathrm{e}) \tan x$ for $x \neq$ odd multiple of $\frac{\pi}{2}$.
17.10 Prove the following functions are discontinuous at the indicated points. You may use either Definition 17.1 or the $\varepsilon-\delta$ property in Theorem 17.2.
(a) $f(x)=1$ for $x>0$ and $f(x)=0$ for $x \leq 0, x_{0}=0$;
(b) $g(x)=\sin \left(\frac{1}{x}\right)$ for $x \neq 0$ and $g(0)=0, x_{0}=0$;
(c) $\operatorname{sgn}(x)=1$ for $x>0, \operatorname{sgn}(x)=-1$ for $x<0$, and $\operatorname{sgn}(0)=0, x_{0}=0$.
17.12 (a) Let f be a continuous real-valued function with domain (a, b). Show that if $f(r)=0$ for each rational number r in (a, b), then $f(x)=0$ for all $x \in(a, b)$.
(b) Let f and g be continuous real-valued functions on (a, b) such that $f(r)=g(r)$ for each rational number r in (a, b). Prove $f(x)=g(x)$ for all $x \in(a, b)$. Hint: Use part (a).
18.2 Reread the proof of Theorem 18.1 (a continuous function reaches max and min) with $[a, b]$ replaced by (a, b). Where does it break down? Discuss.
18.6 Prove $x=\cos x$ for some x in $\left(0, \frac{\pi}{2}\right)$.
18.9 Prove that a polynomial function f of odd degree has at least one real root. Hint: You may assume that the leading term is $a_{n} x^{n}$, where n is the degree of the polynomial and $a_{n}>0$. Then you may study the signs of $f(m)$ and $f(-m)$ for big $m \in \mathbb{N}$ by considering the limits of $f(m) / m^{n}$ and $f(-m) / m^{n}$ as $m \rightarrow \infty$.

E1 Let $f(x)=0$ for all $x \in \mathbb{Q}$ and $f(x)=1$ for all $x \in \mathbb{R} \backslash \mathbb{Q}$. Show that f is not continuous at any $x \in \mathbb{R}$. Hint: Use the denseness of $\mathbb{Q}(4.7)$ and the denseness of $\mathbb{R} \backslash \mathbb{Q}$ (Exercise 4.12).

