Homework 8 Solutions

17.2 Let $f(x)=4$ for $x \geq 0, f(x)=0$ for $x<0$, and $g(x)=x^{2}$ for all x . Thus $\operatorname{dom}(f)=$ $\operatorname{dom}(g)=\mathbb{R}$.
(a) Determine the following functions: $f+g, f g, f \circ g, g \circ f$. Be sure to specify their domains.
(b) Which of the functions $f, g, f+g, f g, f \circ g, g \circ f$ is continuous?

Solution. (a) Since $\operatorname{dom}(f)=\operatorname{dom}(g)=\mathbb{R}, \operatorname{dom}(f+g)=\operatorname{dom}(f g)=\operatorname{dom}(f \circ g)=$ $\operatorname{dom}(g \circ f)=\mathbb{R}$. We have
$-(f+g)(x)=4+x^{2}$ for $x \geq 0 ;=x^{2}$ for $x<0 ;$
$-(f g)(x)=4 x^{2}$ for $x \geq 0 ;=0$ for $x<0$;
$-(f \circ g)(x)=4 ;$
$-(g \circ f)(x)=16$ for $x \geq 0 ;=0$ for $x<0$.
(b) $g, f g, f \circ g$ are continuous, $f, f+t, g \circ f$ are not continuous.
17.3 Accept on faith that the following familiar functions are continuous on their domains: $\sin x, \cos x, e^{x}, 2^{x}, \log _{e} x$ for $x>0, x^{p}$ for $x>0[p$ any real number $]$. Use these facts and theorems in this section to prove the following functions are also continuous. (b) $\left[\sin ^{2} x+\cos ^{6} x\right]^{\pi}(\mathrm{e}) \tan x$ for $x \neq$ odd multiple of $\frac{\pi}{2}$.

Solution. (b) From that $\sin x$ is continuous, we get $\sin ^{2} x=\sin x \cdot \sin x$ is continuous. From the continuity of $\cos x$ and x^{6}, we see that their composition $\cos ^{6} x$ is continuous. Combining the continuity of $\sin ^{2} x$ and $\cos ^{6} x$, we see that $\sin ^{2} x+\cos ^{6} x$ is continuous. Combining this fact with the continuity of x^{π}, we see that their composition $\left[\sin ^{2} x+\right.$ $\left.\cos ^{6} x\right]^{\pi}$ is continuous.
(e) Since $\sin x$ and $\cos x$ are continuous, their ratio $\tan x=\frac{\sin x}{\cos x}$ is continuous for $x \in \mathbb{R}$ such that $\cos x \neq 0$. Since $\cos x=0$ iff x is an odd multiple of $\frac{\pi}{2}$, we get the conclusion.
17.10 Prove the following functions are discontinuous at the indicated points. You may use either Definition 17.1 or the $\varepsilon-\delta$ property in Theorem 17.2.
(a) $f(x)=1$ for $x>0$ and $f(x)=0$ for $x \leq 0, x_{0}=0$;
(b) $g(x)=\sin \left(\frac{1}{x}\right)$ for $x \neq 0$ and $g(0)=0, x_{0}=0$;
(c) $\operatorname{sgn}(x)=1$ for $x>0, \operatorname{sgn}(x)=-1$ for $x<0$, and $\operatorname{sgn}(0)=0, x_{0}=0$.

Proof. (a) Let $x_{n}=\frac{1}{n}, n \in \mathbb{N}$. Then $x_{n} \rightarrow 0=x_{0}$. Since $x_{n}>0, f\left(x_{n}\right)=1$ for all n. But $f\left(x_{0}\right)=0$. So we do not have $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$.
(b) We know $\sin \left(2 n \pi+\frac{\pi}{2}\right)=1$ for all $n \in \mathbb{N}$. Let $x_{n}=\frac{1}{2 n \pi+\pi / 2}, n \in \mathbb{N}$. Then $x_{n} \rightarrow 0=x_{0}$, and $g\left(x_{n}\right)=\sin (2 n \pi+\pi / 2)=1$ for all n. So $g\left(x_{n}\right) \rightarrow 1 \neq 0=g\left(x_{0}\right)$.
(c) Let $x_{n}=\frac{1}{n}, n \in \mathbb{N}$. Then $x_{n} \rightarrow 0=x_{0}$. Since $x_{n}>0, \operatorname{sgn}\left(x_{n}\right)=1$ for all n. But $\operatorname{sgn}\left(x_{0}\right)=0$. So we do not have $\operatorname{sgn}\left(x_{n}\right) \rightarrow \operatorname{sgn}\left(x_{0}\right)$.
17.12 (a) Let f be a continuous real-valued function with domain (a, b). Show that if $f(r)=0$ for each rational number r in (a, b), then $f(x)=0$ for all $x \in(a, b)$.
(b) Let f and g be continuous real-valued functions on (a, b) such that $f(r)=g(r)$ for each rational number r in (a, b). Prove $f(x)=g(x)$ for all $x \in(a, b)$. Hint: Use part (a).

Proof. (a) Let $x_{0} \in(a, b)$. Let $s=\min \left\{x_{0}-a, b-x_{0}\right\}>0$. If $\left|x-x_{0}\right|<s$, then $x \in\left(x_{0}-s, x_{0}+s\right) \subseteq(a, b)$. For each $n \in \mathbb{N}$, by the denseness of \mathbb{Q}, there is $r_{n} \in \mathbb{Q}$ lying in the interval $\left(x_{0}-\frac{s}{n}, x_{0}+\frac{s}{n}\right) \subseteq\left(x_{0}-s, x_{0}+s\right) \subseteq(a, b)$. Thus, $\left(r_{n}\right)$ is a sequence in (a, b), and $\left|r_{n}-x_{0}\right|<\frac{s}{n}$ for each n. So we have $r_{n} \rightarrow x_{0}$. By the assumption, $f\left(r_{n}\right)=0$ for each n. By the continuity of f at $x_{0}, f\left(x_{0}\right)=\lim f\left(r_{n}\right)=0$.
(b) Let $h=f-g$. Then h is continuous on (a, b) and $h(r)=0$ for each rational number r in (a, b). By (a) $h(x)=0$ for all $x \in(a, b)$, which implies that $f(x)=g(x)$ for all $x \in(a, b)$.
18.2 Reread the proof of Theorem 18.1 (a continuous function reaches max and min) with $[a, b]$ replaced by (a, b). Where does it break down? Discuss.

Solution. When we apply the Bolzano-Weierstrass Theorem, we get a convergent subsequence $\left(x_{n_{k}}\right)$ in (a, b). The limit $\left(x_{n_{k}}\right)$ may be a or b, at which f is not defined, and so we can not conclude that the sequence ($f\left(x_{n_{k}}\right)$ converges.
18.6 Prove $x=\cos x$ for some x in $\left(0, \frac{\pi}{2}\right)$.

Proof. Let $f(x)=x-\cos x$. Since x and $\cos x$ are continuous, f is continuous on \mathbb{R}. We calculate $f(0)=0-\cos 0=-1<0$ and $f\left(\frac{\pi}{2}\right)=\frac{\pi}{2}-\cos \frac{\pi}{2}=\frac{\pi}{2}>0$. By Intermediate Value Theorem, there is $x \in\left(0, \frac{\pi}{2}\right)$ such that $0=f(x)=x-\cos x$, which implies that $x=\cos x$.
18.9 Prove that a polynomial function f of odd degree has at least one real root.

Proof. Suppose f is of degree n and expressed by $f(x)=\sum_{k=0}^{n} a_{k} x^{k}$ with $a_{n} \neq 0$. We may assume that the leading coefficient a_{n} is positive because otherwise $-f$ is also a polynomial of odd degree, whose leading coefficient is positive, and we may work on $-f$ (a root of $-f$ is also a root of f).
We calculate $\frac{f(m)}{m^{n}}=\sum_{k=0}^{n} a_{k} m^{k-n}=a_{n}+\sum_{k=0}^{n-1} a_{k} m^{k-n}$. For $0 \leq k \leq n-1$, we have $k-n<0$, and so $m^{k-n} \rightarrow 0$ as $m \rightarrow \infty$. Thus,

$$
\lim _{m \rightarrow \infty} \frac{f(m)}{m^{n}}=a_{n}+\sum_{k=0}^{n-1} a_{k} \lim _{m \rightarrow \infty} m^{k-n}=a_{n}>0
$$

On the other hand, using the oddness of n, we get

$$
\lim _{m \rightarrow \infty} \frac{f(-m)}{m^{n}}=(-1)^{n} a_{n}+\sum_{k=0}^{n-1} a_{k} \lim _{m \rightarrow \infty}(-1)^{k} m^{k-n}=-a_{n}<0 .
$$

Thus, there are $m_{1}, m_{2} \in \mathbb{N}$ such that $\frac{f\left(m_{1}\right)}{m_{1}^{n}}>0$ and $\frac{f\left(-m_{2}\right)}{m_{2}^{n}}<0$. Since $m_{1}^{n}, m_{2}^{n}>0$, we get $f\left(m_{1}\right)>0$ and $f\left(m_{2}\right)<0$. Since f is continuous on \mathbb{R}, by Intermediate Value Theorem, there is $x \in\left(-m_{2}, m_{1}\right)$ such that $f(x)=0$. Such x is a real root of f.

E1 Let $f(x)=0$ for all $x \in \mathbb{Q}$ and $f(x)=1$ for all $x \in \mathbb{R} \backslash \mathbb{Q}$. Show that f is not continuous at any $x \in \mathbb{R}$. Hint: Use the denseness of $\mathbb{Q}(4.7)$ and the denseness of $\mathbb{R} \backslash \mathbb{Q}$ (Exercise 4.12).

Proof. Fix $x_{0} \in \mathbb{R}$. We now show that f is not continuous at x_{0}. Case 1. $x_{0} \in \mathbb{R} \backslash \mathbb{Q}$. Then $f\left(x_{0}\right)=1$. By the denseness of \mathbb{Q} in 4.7, for any $n \in \mathbb{N}$, there is $x_{n} \in \mathbb{Q} \cap\left(x_{0}-\frac{1}{n}, x_{0}+\frac{1}{n}\right)$. Then $\left|x_{n}-x_{0}\right|<\frac{1}{n}$ for all n, which implies that $x_{n} \rightarrow x_{0}$. Since $x_{n} \in \mathbb{Q}$, we have $f\left(x_{n}\right)=0$ So we do not have $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$, and so f is not continuous at x_{0}. Case 2. $x_{0} \in \mathbb{Q}$. Then $f\left(x_{0}\right)=0$. By the denseness of $\mathbb{R} \backslash \mathbb{Q}$ as in Exercise 4.12, for any $n \in \mathbb{N}$, there is $x_{n} \in(\mathbb{R} \backslash \mathbb{Q}) \cap\left(x_{0}-\frac{1}{n}, x_{0}+\frac{1}{n}\right)$. Then $\left|x_{n}-x_{0}\right|<\frac{1}{n}$ for all n, which implies that $x_{n} \rightarrow x_{0}$. Since $x_{n} \in \mathbb{R} \backslash \mathbb{Q}$, we have $f\left(x_{n}\right)=1$ So we do not have $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$, and so f is not continuous at x_{0}.

