
Homework 8 Solutions

17.2 Let f(x) = 4 for x ≥ 0, f(x) = 0 for x < 0, and g(x) = x2 for all x. Thus dom(f) =
dom(g) = R.

(a) Determine the following functions: f + g, fg, f ◦ g, g ◦ f . Be sure to specify their
domains.

(b) Which of the functions f , g, f + g, fg, f ◦ g, g ◦ f is continuous?

Solution. (a) Since dom(f) = dom(g) = R, dom(f + g) = dom(fg) = dom(f ◦ g) =
dom(g ◦ f) = R. We have

– (f + g)(x) = 4 + x2 for x ≥ 0; = x2 for x < 0;

– (fg)(x) = 4x2 for x ≥ 0; = 0 for x < 0;

– (f ◦ g)(x) = 4;

– (g ◦ f)(x) = 16 for x ≥ 0; = 0 for x < 0.

(b) g, fg, f ◦ g are continuous, f, f + t, g ◦ f are not continuous.

17.3 Accept on faith that the following familiar functions are continuous on their domains:
sinx, cosx, ex, 2x, loge x for x > 0, xp for x > 0 [p any real number]. Use these facts
and theorems in this section to prove the following functions are also continuous. (b)
[sin2 x+ cos6 x]π (e) tanx for x 6= odd multiple of π

2 .

Solution. (b) From that sinx is continuous, we get sin2 x = sinx · sinx is continuous.
From the continuity of cosx and x6, we see that their composition cos6 x is continuous.
Combining the continuity of sin2 x and cos6 x, we see that sin2 x + cos6 x is continuous.
Combining this fact with the continuity of xπ, we see that their composition [sin2 x +
cos6 x]π is continuous.

(e) Since sinx and cosx are continuous, their ratio tanx = sinx
cosx is continuous for x ∈ R

such that cosx 6= 0. Since cosx = 0 iff x is an odd multiple of π2 , we get the conclusion.

17.10 Prove the following functions are discontinuous at the indicated points. You may use
either Definition 17.1 or the ε− δ property in Theorem 17.2.

(a) f(x) = 1 for x > 0 and f(x) = 0 for x ≤ 0, x0 = 0;

(b) g(x) = sin( 1x) for x 6= 0 and g(0) = 0, x0 = 0;

(c) sgn(x) = 1 for x > 0, sgn(x) = −1 for x < 0, and sgn(0) = 0, x0 = 0.
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Proof. (a) Let xn = 1
n , n ∈ N. Then xn → 0 = x0. Since xn > 0, f(xn) = 1 for all n. But

f(x0) = 0. So we do not have f(xn)→ f(x0).

(b) We know sin(2nπ+ π
2 ) = 1 for all n ∈ N. Let xn = 1

2nπ+π/2 , n ∈ N. Then xn → 0 = x0,

and g(xn) = sin(2nπ + π/2) = 1 for all n. So g(xn)→ 1 6= 0 = g(x0).

(c) Let xn = 1
n , n ∈ N. Then xn → 0 = x0. Since xn > 0, sgn(xn) = 1 for all n. But

sgn(x0) = 0. So we do not have sgn(xn)→ sgn(x0).

17.12 (a) Let f be a continuous real-valued function with domain (a, b). Show that if f(r) = 0
for each rational number r in (a, b), then f(x) = 0 for all x ∈ (a, b).

(b) Let f and g be continuous real-valued functions on (a, b) such that f(r) = g(r) for
each rational number r in (a, b). Prove f(x) = g(x) for all x ∈ (a, b). Hint: Use part
(a).

Proof. (a) Let x0 ∈ (a, b). Let s = min{x0 − a, b − x0} > 0. If |x − x0| < s, then
x ∈ (x0 − s, x0 + s) ⊆ (a, b). For each n ∈ N, by the denseness of Q, there is rn ∈ Q lying
in the interval (x0 − s

n , x0 + s
n) ⊆ (x0 − s, x0 + s) ⊆ (a, b). Thus, (rn) is a sequence in

(a, b), and |rn − x0| < s
n for each n. So we have rn → x0. By the assumption, f(rn) = 0

for each n. By the continuity of f at x0, f(x0) = lim f(rn) = 0.

(b) Let h = f − g. Then h is continuous on (a, b) and h(r) = 0 for each rational number
r in (a, b). By (a) h(x) = 0 for all x ∈ (a, b), which implies that f(x) = g(x) for all
x ∈ (a, b).

18.2 Reread the proof of Theorem 18.1 (a continuous function reaches max and min) with [a, b]
replaced by (a, b). Where does it break down? Discuss.

Solution. When we apply the Bolzano-Weierstrass Theorem, we get a convergent subse-
quence (xnk

) in (a, b). The limit (xnk
) may be a or b, at which f is not defined, and so

we can not conclude that the sequence (f(xnk
) converges.

18.6 Prove x = cosx for some x in (0, π2 ).

Proof. Let f(x) = x− cosx. Since x and cosx are continuous, f is continuous on R. We
calculate f(0) = 0 − cos 0 = −1 < 0 and f(π2 ) = π

2 − cos π2 = π
2 > 0. By Intermediate

Value Theorem, there is x ∈ (0, π2 ) such that 0 = f(x) = x − cosx, which implies that
x = cosx.

18.9 Prove that a polynomial function f of odd degree has at least one real root.
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Proof. Suppose f is of degree n and expressed by f(x) =
∑n

k=0 akx
k with an 6= 0. We

may assume that the leading coefficient an is positive because otherwise −f is also a
polynomial of odd degree, whose leading coefficient is positive, and we may work on −f
(a root of −f is also a root of f).

We calculate f(m)
mn =

∑n
k=0 akm

k−n = an +
∑n−1

k=0 akm
k−n. For 0 ≤ k ≤ n − 1, we have

k − n < 0, and so mk−n → 0 as m→∞. Thus,

lim
m→∞

f(m)

mn
= an +

n−1∑
k=0

ak lim
m→∞

mk−n = an > 0.

On the other hand, using the oddness of n, we get

lim
m→∞

f(−m)

mn
= (−1)nan +

n−1∑
k=0

ak lim
m→∞

(−1)kmk−n = −an < 0.

Thus, there are m1,m2 ∈ N such that f(m1)
mn

1
> 0 and f(−m2)

mn
2

< 0. Since mn
1 ,m

n
2 > 0,

we get f(m1) > 0 and f(m2) < 0. Since f is continuous on R, by Intermediate Value
Theorem, there is x ∈ (−m2,m1) such that f(x) = 0. Such x is a real root of f .

E1 Let f(x) = 0 for all x ∈ Q and f(x) = 1 for all x ∈ R \Q. Show that f is not continuous
at any x ∈ R. Hint: Use the denseness of Q (4.7) and the denseness of R \ Q (Exercise
4.12).

Proof. Fix x0 ∈ R. We now show that f is not continuous at x0. Case 1. x0 ∈ R\Q. Then
f(x0) = 1. By the denseness of Q in 4.7, for any n ∈ N, there is xn ∈ Q∩ (x0− 1

n , x0 + 1
n).

Then |xn − x0| < 1
n for all n, which implies that xn → x0. Since xn ∈ Q, we have

f(xn) = 0 So we do not have f(xn) → f(x0), and so f is not continuous at x0. Case 2.
x0 ∈ Q. Then f(x0) = 0. By the denseness of R \ Q as in Exercise 4.12, for any n ∈ N,
there is xn ∈ (R \Q) ∩ (x0 − 1

n , x0 + 1
n). Then |xn − x0| < 1

n for all n, which implies that
xn → x0. Since xn ∈ R \Q, we have f(xn) = 1 So we do not have f(xn)→ f(x0), and so
f is not continuous at x0.
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