Homework 9 (due on 11/1)

- Read Sections 20, 23, and 24 for the next week.
- We are going to have the second quiz on Monday, October 28. It covers the material we have learned up to Oct 18.
- 19.1 Which of the following continuous functions are uniformly continuous on the specified set? Justify your answers. Use any theorems you wish. (a) $f(x) = x^{17} \sin x e^x \cos 3x$ on $[0, \pi]$; (d) $f(x) = x^3$ on \mathbb{R} ; (f) $f(x) = \sin \frac{1}{x^2}$ on (0, 1]; (g) $f(x) = x^2 \sin \frac{1}{x}$.
- 19.2 Prove each of the following functions is uniformly continuous on the indicated set by directly verifying the $\varepsilon \delta$ property in Definition 19.1. (c) $f(x) = \frac{1}{x}$ on $[\frac{1}{2}, \infty)$.
- 19.4 (a) Prove that if f is uniformly continuous on a bounded set S, then f is a bounded function on S. Hint: Assume not. Use Theorems 11.5 and 19.4.
 - (b) Use (a) to give yet another proof that $\frac{1}{x^2}$ is not uniformly continuous on (0, 1).
- 19.5 Which of the following continuous functions is uniformly continuous on the specified set? Justify your answers, using appropriate theorems or Exercise 19.4(a). (a) $\tan x$ on $[0, \frac{\pi}{4}]$, (b) $\tan x$ on $[0, \frac{\pi}{2})$, (c) $\frac{1}{x}\sin^2 x$ on $(0, \pi]$, (d) $\frac{1}{x-3}$ on (0, 3), (e) $\frac{1}{x-3}$ on $(3, \infty)$, (f) (d) $\frac{1}{x-3}$ on $[4, \infty)$.
- 19.8 (a) Use the Mean Value theorem to prove $|\sin x \sin y| \le |x y|$ for all $x, y \in \mathbb{R}$; see the proof of Theorem 19.6.
 - (b) Show $\sin x$ is uniformly continuous on \mathbb{R} .
- 20.6 Determine, by inspection, the limits $\lim_{x\to\infty} f(x)$, $\lim_{x\to 0^+} f(x)$, $\lim_{x\to 0^-} f(x)$, $\lim_{x\to -\infty} f(x)$ and $\lim_{x\to 0} f(x)$ when they exist for the function $f(x) = \frac{x^3}{|x|}$. Prove your assertions.
- 20.11 Find the following limits. (a) $\lim_{x\to a} \frac{x^2 a^2}{x a}$; (b) $\lim_{x\to b} \frac{\sqrt{x} \sqrt{b}}{x b}$, b > 0; (c) $\lim_{x\to a} \frac{x^3 a^3}{x a}$. Hint: $x^3 - a^3 = (x - a)(x^2 + ax + a^2)$.
- 20.16 Suppose that the limits $L_1 = \lim_{x \to a^+} f_1(x)$ and $L_2 = \lim_{x \to a^+} f_2(x)$ exist.
 - (a) Show if $f_1(x) \leq f_2(x)$ for all x in some interval (a, b), then $L_1 \leq L_2$. Hint: You may use the results on limits of sequences: If $x_n \to L_1$ and $y_n \to L$, and $x_n \leq y_n$ for each n, then $L_1 \leq L_2$. See Exercises 8.9 and 9.9.
 - (b) Suppose that, in fact, $f_1(x) < f_2(x)$ for all x in some interval (a, b). Can you conclude that $L_1 < L_2$?
- 20.17 Show that if $\lim_{x\to a^+} f_1(x) = \lim_{x\to a^+} f_3(x) = L$ and if $f_1(x) \leq f_2(x) \leq f_3(x)$ for all x in some interval (a, b), then $\lim_{x\to a^+} f_2(x) = L$. Hint: When $L \in \mathbb{R}$, use Exercise 8.5 (Squeeze Lemma for sequences, Theorem 1 in the lecture notes of Sep 16-18). When $L = +\infty$ or $-\infty$, use Exercise 9.9 (the first problem in Homework 4).