
Homework 9 Solutions

19.1 Which of the following continuous functions are uniformly continuous on the specified
set? Justify your answers. Use any theorems you wish. (a) f(x) = x17 sinx − ex cos 3x
on [0, π]; (d) f(x) = x3 on R; (f) f(x) = sin 1

x2
on (0, 1]; (g) f(x) = x2 sin 1

x on (0, 1].

Solution. (a) Since x17, sinx, ex, and cos(3x) are continuous on R, f is continuous on R,
and so is continuous on [0, π]. Since [0, π] is a bounded and continuous interval, and f is
continuous on this interval, by Theorem 19.2, f is uniformly continuous on [0, π].

(d) f(x) = x3 is not uniformly continuous on R. To justify this claim, we find two
sequences real numbers (xn) and (yn) such that xn − yn → 0 but f(xn)− f(yn) 6→ 0. We
define xn = n + 1

n and yn = n, n ∈ N. We have xn − yn = 1
n → 0, but f(xn) − f(yn) =

(n+ 1
n)3 − n3 = 3n+ 3

n + 1
n3 ≥ 3n, which implies that f(xn)− f(yn) → +∞. So we get

f(xn)− f(yn) 6→ 0, as desired.

(f) f is not uniformly continuous on (0, 1]. Suppose f is uniformly continuous on (0, 1].
Then for any Cauchy sequence (xn) in (0, 1], we have that (f(xn)) is also Cauchy by
Theorem 19.4. Now we define xn = (nπ+π/2)−1/2, n ∈ N. For n ∈ N, since nπ+π/2 ≥ 1,
we get xn ∈ (0, 1]. So (xn) is a sequence in (0, 1]. Since nπ + π/2 → +∞, we have
(nπ + π/2)−1 → 0, and so xn =

√
(nπ + π/2)−1 → 0. Thus, (xn) is a Cauchy sequence

in (0, 1]. We calculate f(xn) = sin(x−2n ) = sin(nπ + π
2 ) = (−1)n, n ∈ N. We have studied

that (f(xn)) is not convergent, and so is not Cauchy. The contradiction shows that f is
not uniformly continuous on (0, 1].

(g) f is uniformly continuous on (0, 1]. We define f̃ on [0, 1] such that f̃(x) = f(x) for
x ∈ (0, 1], and f̃(0) = 0. We claim that f̃ is continuous on [0, 1]. Since f̃ agrees with
f on (0, 1], and f is continuous on (0, 1], f̃ is continuous at every x ∈ (0, 1]. It remains
to show that f̃ is continuous at 0. We need to show that if (xn) is a sequence in (0, 1]
such that xn → 0, then f̃(xn) → f̃(0), which is equivalent to that f(xn) → 0. From
xn → 0, we get x2n → 0. Since | sin(1/xn)| ≤ 1, we have |f(xn)| = |x2n sin( 1

xn
)| ≤ |xn|2.

By squeeze lemma, we have f(xn)→ 0, as desired. Thus, f̃ is continuous on [0, 1]. Thus,
f̃ is a continuous extension of f on [0, 1]. By Theorem 19.5, f is uniformly continuously
on (0, 1].

19.2 Prove each of the following functions is uniformly continuous on the indicated set by
directly verifying the ε− δ property in Definition 19.1. (c) f(x) = 1

x on [12 ,∞).

Solution. We observe that for x, y ∈ [12 ,∞),

|f(x)− f(y)| =
∣∣∣1
x
− 1

y

∣∣∣ =
∣∣∣y − x
xy

∣∣∣ =
|y − x|
|xy|

=
|x− y|
xy

≤ 4|x− y|,

where the last inequality holds because 1
xy ≤

1
1/2·1/2 = 4.
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For any ε > 0, set δ = ε/4 > 0. Suppose x, y ∈ [12 ,∞) and |x − y| < δ, then from the
above displayed formula, |f(x) − f(y)| ≤ 4|x − y| < 4δ = ε. By Definition 19.1, f is
uniformly continuous on [12 ,∞).

19.4 (a) Prove that if f is uniformly continuous on a bounded set S, then f is a bounded
function on S. Hint: Assume not. Use Theorems 11.5 and 19.4.

(b) Use (a) to give yet another proof that 1
x2

is not uniformly continuous on (0, 1).

Proof. (a) Suppose f is not bounded on S. Then for any n ∈ N, there is xn ∈ S such that
|f(xn)| > n. So we get |f(xn)| → ∞. Since S is bounded, (xn) is a bounded sequence. By
Bolzano-Weierstrass Theorem (Theorem 11.5), (xn) contains a convergent subsequence
(xnk

), which is a Cauchy sequence. By Theorem 19.4, (f(xnk
)) is also a Cauchy sequence.

So f(xnk
) converges. On the other hand, from |f(xn)| → +∞, we get |f(xnk

)| → +∞,
which contradicts that f(xnk

) converges. Thus, f is bounded on S.

(b) If 1
x2

is uniformly continuous on (0, 1), then since (0, 1) is bounded, by (a) 1
x2

is
bounded on (0, 1). However, if we take xn = 1

n+1 ∈ (0, 1), n ∈ N, then 1
x2n

= (n+1)2 →∞,

which contradicts the boundedness of 1
x2

on (0, 1). So 1
x2

is not uniformly continuous on
(0, 1).

19.5 Which of the following continuous functions is uniformly continuous on the specified set?
Justify your answers, using appropriate theorems or Exercise 19.4(a). (a) tanx on [0, π4 ],
(b) tanx on [0, π2 ), (c) 1

x sin2 x on (0, π], (d) 1
x−3 on (0, 3), (e) 1

x−3 on (3,∞), (f) 1
x−3 on

[4,∞).

Solution. (a) We know that tanx = sinx
cosx is continuous on R\{x : cosx = 0} = R\{nπ+ π

2 :
n ∈ Z}. So tanx is continuous on [0, π4 ]. Since [0, π4 ] is a bounded closed interval, tanx
is uniformly continuous on [0, π4 ].

(b) If tanx is uniformly continuous on [0, π2 ), then by Exercise 19.4, tanx is bounded on
[0, π2 ). However, as xn ∈ (0, π2 ) and xn → π

2 , we have sin(xn) → sin(π2 ) = 1, cos(xn) →
cos(π2 ) = 0, and cos(xn) > 0 for all n. Thus, tan(xn) = sin(xn)

cos(xn)
→ ∞. This implies

that tanx is not bounded on [0, π2 ). The contradiction shows that tanx is not uniformly
continuous on [0, π2 ).

(c) From Example 9 of Section 19, sinx
x extends to a continuous function on R. Since

sinx is continuous on R, 1
x sin2 x = sinx

x · sinx also extends to a continuous function on R.
Thus, 1

x sin2 x restricted to (0, π] has a continuous extension to [0, π]. By Theorem 19.5,
1
x sin2 x is uniformly continuous on (0, π].

(d) If 1
x−3 is uniformly continuous on (0, 3), then by Exercise 19.4, 1

x−3 is bounded on

(0, 3). However, if we choose xn = 3− 1
n ∈ (0, 3), n ∈ N, then 1

xn−3 = −n→ −∞. So 1
x−3

is not bounded on (0, 3). The contradiction shows that 1
x−3 is not uniformly continuous

on (0, 3).
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(e) If 1
x−3 is uniformly continuous on (3,∞), then it is uniformly continuous on (3, 4]. By

Exercise 19.4, 1
x−3 is bounded on (3, 4]. However, if we choose xn = 3 + 1

n ∈ (3, 4], n ∈ N,

then 1
xn−3 = n → +∞. So 1

x−3 is not bounded on (3, 4]. The contradiction shows that
1

x−3 is not uniformly continuous on (3,∞).

(f) We calculate the derivative of 1
x−3 and find∣∣∣ d

dx

1

x− 3

∣∣∣ =
∣∣∣ −1

(x− 3)2

∣∣∣ =
1

|x− 3|2
≤ 1

(4− 3)2
= 1

on [4,∞). So the derivative of 1
x−3 is bounded on [4,∞). By Theorem 19.6, 1

x−3 is
uniformly continuous on [4,∞).

19.8 (a) Use the Mean Value theorem to prove | sinx − sin y| ≤ |x − y| for all x, y ∈ R; see
the proof of Theorem 19.6.

(b) Show sinx is uniformly continuous on R.

Proof. (a) Let x, y ∈ R. If x = y, then | sinx− sin y| = 0 = |x− y|. Suppose x 6= y. Since
|x− y| = |y − x| and | sinx− sin y| = | sin y − sinx|, by symmetry we may assume x < y.
Applying the Mean Value theorem to sinx on the interval (x, y), we get the existence of
z ∈ (x, y) such that sinx−sin y

x−y = sin′(z) = cos(z). So | sinx−sin yx−y | = | cos(z)| ≤ 1, which
implies that | sinx− sin y| ≤ |x− y|.
(b) For ε > 0, let δ = ε > 0. If x, y ∈ R satisfy |x− y| < δ, then by (a), | sinx− sin y| ≤
|x− y| < δ = ε. By Definition 19.1, sinx is uniformly continuous on R.

20.6 Determine, by inspection, the limits limx→∞ f(x), limx→0+ f(x), limx→0− f(x), limx→−∞ f(x)

and limx→0 f(x) when they exist for the function f(x) = x3

|x| . Prove your assertions.

Solution. For x > 0, f(x) = x3

x = x2. If (xn) is a sequence in (0,∞) with xn →∞, then
f(xn) = x2n →∞. So limx→∞ f(x) =∞. If (xn) is a sequence in (0,∞) and xn → 0, then

f(xn) = x2n → 0. So limx→0+ f(x) = 0. For x < 0, f(x) = x3

−x = −x2. If (xn) is a sequence

in (−∞, 0) with xn → −∞, then f(xn) = −x2n → −∞. So limx→−∞ f(x) = −∞. If (xn)
is a sequence in (−∞, 0) and xn → 0, then f(xn) = x2n → 0. So limx→0− f(x) = 0. Since
limx→0+ f(x) = limx→0− f(x) = 0, we get limx→0 f(x) = 0.

20.11 Find the following limits. (a) limx→a
x2−a2
x−a ; (b) limx→b

√
x−
√
b

x−b , b > 0; (c) limx→a
x3−a3
x−a .

Hint: x3 − a3 = (x− a)(x2 + ax+ a2).

Solution. (a) Since x2−a2
x−a = (x+a)(x−a)

x−a = x+ a for x 6= a, we have

lim
x→a

x2 − a2

x− a
= lim

x→a
(x+ a) = 2a.
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(b) Since
√
x−
√
b

x−b =
√
x−
√
b

(
√
x−
√
b)(
√
x+
√
b)

= 1√
x+
√
b

for x 6= b, we have

lim
x→b

√
x−
√
b

x− b
= lim

x→b

1
√
x+
√
b

=
1

2
√
b
.

(c) Since x3−a3
x−a = (x−a)(x2+ax+a2)

x−a = x2 + ax+ a2, we get

lim
x→a

x3 − a3

x− a
= lim

x→a
(x2 + ax+ a2) = 3a2.

20.16 Suppose that the limits L1 = limx→a+ f1(x) and L2 = limx→a+ f2(x) exist.

(a) Show if f1(x) ≤ f2(x) for all x in some interval (a, b), then L1 ≤ L2. Hint: You may
use the results on limits of sequences: If xn → L1 and yn → L, and xn ≤ yn for each
n, then L1 ≤ L2. See Exercises 8.9 and 9.9.

(b) Suppose that, in fact, f1(x) < f2(x) for all x in some interval (a, b). Can you conclude
that L1 < L2?

Proof. (a) Let (xn) be a sequence in (a, b) such that xn → a. Then f1(xn) → L1,
f2(xn)→ L2, and f1(xn) ≤ f2(xn) for each n. By Exercises 8.9 and 9.9, we get L1 ≤ L2.

(b) We can not conclude L1 < L2 even if f1(x) < f2(x) for all x in some interval (a, b).
For example, a = 0, b = 1, f1(x) = 0 and f2(x) = x on (0, 1). Then f1(x) < f2(x) on
(0, 1), but limx→0+ f1(x) = 0 = limx→0+ f2(x).

20.17 Show that if limx→a+ f1(x) = limx→a+ f3(x) = L and if f1(x) ≤ f2(x) ≤ f3(x) for all x
in some interval (a, b), then limx→a+ f2(x) = L. Hint: When L ∈ R, use Exercise 8.5
(Squeeze Lemma for sequences, Theorem 1 in the lecture notes of Sep 16-18). When
L = +∞ or −∞, use Exercise 9.9 (the first problem in Homework 4).

Proof. We first prove the following statement. If xn ≤ zn ≤ yn for all n, and limxn =
L = lim yn, where L could be a real number or +∞ or −∞, then lim zn = L. If L ∈ R,
then this follows from the squeeze lemma (Exercise 8.5); if L = +∞, since xn ≤ zn for
each n, and xn → +∞, by Exercise 9.9 (a), zn → +∞; if L = −∞, since zn ≤ yn for each
n, and yn → −∞, by Exercise 9.9 (b), zn → −∞.

Now we return to the proof. Suppose (xn) is a sequence in (a, b) such that xn → a. From
limx→a+ f1(x) = limx→a+ f3(x) = L we know that lim f1(xn) = lim f3(xn) = L. From
that f1(x) ≤ f2(x) ≤ f3(x) on (a, b) we know that f1(xn) ≤ f2(xn) ≤ f3(xn) for each n.
By the above paragraph, we get f2(xn) → L. Since this holds for any sequence (xn) in
(a, b) with xn → a, we get limx→a+ f2(x) = L.
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