Homework 9 Solutions

19.1 Which of the following continuous functions are uniformly continuous on the specified set? Justify your answers. Use any theorems you wish. (a) $f(x) = x^{17} \sin x - e^x \cos 3x$ on $[0, \pi]$; (d) $f(x) = x^3$ on \mathbb{R} ; (f) $f(x) = \sin \frac{1}{x^2}$ on (0, 1]; (g) $f(x) = x^2 \sin \frac{1}{x}$ on (0, 1].

Solution. (a) Since x^{17} , $\sin x$, e^{x} , and $\cos(3x)$ are continuous on \mathbb{R} , f is continuous on \mathbb{R} , and so is continuous on $[0, \pi]$. Since $[0, \pi]$ is a bounded and continuous interval, and f is continuous on this interval, by Theorem 19.2, f is uniformly continuous on $[0, \pi]$.

(d) $f(x) = x^3$ is not uniformly continuous on \mathbb{R} . To justify this claim, we find two sequences real numbers (x_n) and (y_n) such that $x_n - y_n \to 0$ but $f(x_n) - f(y_n) \not\to 0$. We define $x_n = n + \frac{1}{n}$ and $y_n = n$, $n \in \mathbb{N}$. We have $x_n - y_n = \frac{1}{n} \to 0$, but $f(x_n) - f(y_n) = (n + \frac{1}{n})^3 - n^3 = 3n + \frac{3}{n} + \frac{1}{n^3} \ge 3n$, which implies that $f(x_n) - f(y_n) \to +\infty$. So we get $f(x_n) - f(y_n) \not\to 0$, as desired.

(f) f is not uniformly continuous on (0, 1]. Suppose f is uniformly continuous on (0, 1]. Then for any Cauchy sequence (x_n) in (0, 1], we have that $(f(x_n))$ is also Cauchy by Theorem 19.4. Now we define $x_n = (n\pi + \pi/2)^{-1/2}$, $n \in \mathbb{N}$. For $n \in \mathbb{N}$, since $n\pi + \pi/2 \ge 1$, we get $x_n \in (0, 1]$. So (x_n) is a sequence in (0, 1]. Since $n\pi + \pi/2 \to +\infty$, we have $(n\pi + \pi/2)^{-1} \to 0$, and so $x_n = \sqrt{(n\pi + \pi/2)^{-1}} \to 0$. Thus, (x_n) is a Cauchy sequence in (0, 1]. We calculate $f(x_n) = \sin(x_n^{-2}) = \sin(n\pi + \frac{\pi}{2}) = (-1)^n$, $n \in \mathbb{N}$. We have studied that $(f(x_n))$ is not convergent, and so is not Cauchy. The contradiction shows that f is not uniformly continuous on (0, 1].

(g) f is uniformly continuous on (0, 1]. We define \tilde{f} on [0, 1] such that $\tilde{f}(x) = f(x)$ for $x \in (0, 1]$, and $\tilde{f}(0) = 0$. We claim that \tilde{f} is continuous on [0, 1]. Since \tilde{f} agrees with f on (0, 1], and f is continuous on (0, 1], \tilde{f} is continuous at every $x \in (0, 1]$. It remains to show that \tilde{f} is continuous at 0. We need to show that if (x_n) is a sequence in (0, 1] such that $x_n \to 0$, then $\tilde{f}(x_n) \to \tilde{f}(0)$, which is equivalent to that $f(x_n) \to 0$. From $x_n \to 0$, we get $x_n^2 \to 0$. Since $|\sin(1/x_n)| \leq 1$, we have $|f(x_n)| = |x_n^2 \sin(\frac{1}{x_n})| \leq |x_n|^2$. By squeeze lemma, we have $f(x_n) \to 0$, as desired. Thus, \tilde{f} is continuous on [0, 1]. Thus, \tilde{f} is a continuous extension of f on [0, 1]. By Theorem 19.5, f is uniformly continuously on (0, 1].

19.2 Prove each of the following functions is uniformly continuous on the indicated set by directly verifying the $\varepsilon - \delta$ property in Definition 19.1. (c) $f(x) = \frac{1}{x}$ on $[\frac{1}{2}, \infty)$.

Solution. We observe that for $x, y \in [\frac{1}{2}, \infty)$,

$$|f(x) - f(y)| = \left|\frac{1}{x} - \frac{1}{y}\right| = \left|\frac{y - x}{xy}\right| = \frac{|y - x|}{|xy|} = \frac{|x - y|}{xy} \le 4|x - y|,$$

where the last inequality holds because $\frac{1}{xy} \leq \frac{1}{1/2 \cdot 1/2} = 4$.

For any $\varepsilon > 0$, set $\delta = \varepsilon/4 > 0$. Suppose $x, y \in [\frac{1}{2}, \infty)$ and $|x - y| < \delta$, then from the above displayed formula, $|f(x) - f(y)| \le 4|x - y| < 4\delta = \varepsilon$. By Definition 19.1, f is uniformly continuous on $[\frac{1}{2}, \infty)$.

- 19.4 (a) Prove that if f is uniformly continuous on a bounded set S, then f is a bounded function on S. Hint: Assume not. Use Theorems 11.5 and 19.4.
 - (b) Use (a) to give yet another proof that $\frac{1}{r^2}$ is not uniformly continuous on (0,1).

Proof. (a) Suppose f is not bounded on S. Then for any $n \in \mathbb{N}$, there is $x_n \in S$ such that $|f(x_n)| > n$. So we get $|f(x_n)| \to \infty$. Since S is bounded, (x_n) is a bounded sequence. By Bolzano-Weierstrass Theorem (Theorem 11.5), (x_n) contains a convergent subsequence (x_{n_k}) , which is a Cauchy sequence. By Theorem 19.4, $(f(x_{n_k}))$ is also a Cauchy sequence. So $f(x_{n_k})$ converges. On the other hand, from $|f(x_n)| \to +\infty$, we get $|f(x_{n_k})| \to +\infty$, which contradicts that $f(x_{n_k})$ converges. Thus, f is bounded on S.

(b) If $\frac{1}{x^2}$ is uniformly continuous on (0,1), then since (0,1) is bounded, by (a) $\frac{1}{x^2}$ is bounded on (0,1). However, if we take $x_n = \frac{1}{n+1} \in (0,1)$, $n \in \mathbb{N}$, then $\frac{1}{x_n^2} = (n+1)^2 \to \infty$, which contradicts the boundedness of $\frac{1}{x^2}$ on (0,1). So $\frac{1}{x^2}$ is not uniformly continuous on (0,1).

19.5 Which of the following continuous functions is uniformly continuous on the specified set? Justify your answers, using appropriate theorems or Exercise 19.4(a). (a) $\tan x$ on $[0, \frac{\pi}{4}]$, (b) $\tan x$ on $[0, \frac{\pi}{2})$, (c) $\frac{1}{x} \sin^2 x$ on $(0, \pi]$, (d) $\frac{1}{x-3}$ on (0, 3), (e) $\frac{1}{x-3}$ on $(3, \infty)$, (f) $\frac{1}{x-3}$ on $[4, \infty)$.

Solution. (a) We know that $\tan x = \frac{\sin x}{\cos x}$ is continuous on $\mathbb{R} \setminus \{x : \cos x = 0\} = \mathbb{R} \setminus \{n\pi + \frac{\pi}{2} : n \in \mathbb{Z}\}$. So $\tan x$ is continuous on $[0, \frac{\pi}{4}]$. Since $[0, \frac{\pi}{4}]$ is a bounded closed interval, $\tan x$ is uniformly continuous on $[0, \frac{\pi}{4}]$.

(b) If $\tan x$ is uniformly continuous on $[0, \frac{\pi}{2})$, then by Exercise 19.4, $\tan x$ is bounded on $[0, \frac{\pi}{2})$. However, as $x_n \in (0, \frac{\pi}{2})$ and $x_n \to \frac{\pi}{2}$, we have $\sin(x_n) \to \sin(\frac{\pi}{2}) = 1$, $\cos(x_n) \to \cos(\frac{\pi}{2}) = 0$, and $\cos(x_n) > 0$ for all n. Thus, $\tan(x_n) = \frac{\sin(x_n)}{\cos(x_n)} \to \infty$. This implies that $\tan x$ is not bounded on $[0, \frac{\pi}{2})$. The contradiction shows that $\tan x$ is not uniformly continuous on $[0, \frac{\pi}{2})$.

(c) From Example 9 of Section 19, $\frac{\sin x}{x}$ extends to a continuous function on \mathbb{R} . Since $\sin x$ is continuous on \mathbb{R} , $\frac{1}{x}\sin^2 x = \frac{\sin x}{x} \cdot \sin x$ also extends to a continuous function on \mathbb{R} . Thus, $\frac{1}{x}\sin^2 x$ restricted to $(0,\pi]$ has a continuous extension to $[0,\pi]$. By Theorem 19.5, $\frac{1}{x}\sin^2 x$ is uniformly continuous on $(0,\pi]$.

(d) If $\frac{1}{x-3}$ is uniformly continuous on (0,3), then by Exercise 19.4, $\frac{1}{x-3}$ is bounded on (0,3). However, if we choose $x_n = 3 - \frac{1}{n} \in (0,3)$, $n \in \mathbb{N}$, then $\frac{1}{x_n-3} = -n \to -\infty$. So $\frac{1}{x-3}$ is not bounded on (0,3). The contradiction shows that $\frac{1}{x-3}$ is not uniformly continuous on (0,3).

(e) If $\frac{1}{x-3}$ is uniformly continuous on $(3, \infty)$, then it is uniformly continuous on (3, 4]. By Exercise 19.4, $\frac{1}{x-3}$ is bounded on (3, 4]. However, if we choose $x_n = 3 + \frac{1}{n} \in (3, 4]$, $n \in \mathbb{N}$, then $\frac{1}{x_n-3} = n \to +\infty$. So $\frac{1}{x-3}$ is not bounded on (3, 4]. The contradiction shows that $\frac{1}{x-3}$ is not uniformly continuous on $(3, \infty)$.

(f) We calculate the derivative of $\frac{1}{x-3}$ and find

$$\left|\frac{d}{dx}\frac{1}{x-3}\right| = \left|\frac{-1}{(x-3)^2}\right| = \frac{1}{|x-3|^2} \le \frac{1}{(4-3)^2} = 1$$

on $[4,\infty)$. So the derivative of $\frac{1}{x-3}$ is bounded on $[4,\infty)$. By Theorem 19.6, $\frac{1}{x-3}$ is uniformly continuous on $[4,\infty)$.

- 19.8 (a) Use the Mean Value theorem to prove $|\sin x \sin y| \le |x y|$ for all $x, y \in \mathbb{R}$; see the proof of Theorem 19.6.
 - (b) Show $\sin x$ is uniformly continuous on \mathbb{R} .

Proof. (a) Let $x, y \in \mathbb{R}$. If x = y, then $|\sin x - \sin y| = 0 = |x - y|$. Suppose $x \neq y$. Since |x - y| = |y - x| and $|\sin x - \sin y| = |\sin y - \sin x|$, by symmetry we may assume x < y. Applying the Mean Value theorem to $\sin x$ on the interval (x, y), we get the existence of $z \in (x, y)$ such that $\frac{\sin x - \sin y}{x - y} = \sin'(z) = \cos(z)$. So $|\frac{\sin x - \sin y}{x - y}| = |\cos(z)| \leq 1$, which implies that $|\sin x - \sin y| \leq |x - y|$.

(b) For $\varepsilon > 0$, let $\delta = \varepsilon > 0$. If $x, y \in \mathbb{R}$ satisfy $|x - y| < \delta$, then by (a), $|\sin x - \sin y| \le |x - y| < \delta = \varepsilon$. By Definition 19.1, $\sin x$ is uniformly continuous on \mathbb{R} .

20.6 Determine, by inspection, the limits $\lim_{x\to\infty} f(x)$, $\lim_{x\to 0^+} f(x)$, $\lim_{x\to 0^-} f(x)$, $\lim_{x\to -\infty} f(x)$ and $\lim_{x\to 0} f(x)$ when they exist for the function $f(x) = \frac{x^3}{|x|}$. Prove your assertions.

Solution. For x > 0, $f(x) = \frac{x^3}{x} = x^2$. If (x_n) is a sequence in $(0, \infty)$ with $x_n \to \infty$, then $f(x_n) = x_n^2 \to \infty$. So $\lim_{x\to\infty} f(x) = \infty$. If (x_n) is a sequence in $(0,\infty)$ and $x_n \to 0$, then $f(x_n) = x_n^2 \to 0$. So $\lim_{x\to 0^+} f(x) = 0$. For x < 0, $f(x) = \frac{x^3}{-x} = -x^2$. If (x_n) is a sequence in $(-\infty, 0)$ with $x_n \to -\infty$, then $f(x_n) = -x_n^2 \to -\infty$. So $\lim_{x\to -\infty} f(x) = -\infty$. If (x_n) is a sequence in $(-\infty, 0)$ and $x_n \to 0$, then $f(x_n) = x_n^2 \to 0$. So $\lim_{x\to 0^-} f(x) = 0$. Since $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x) = 0$, we get $\lim_{x\to 0} f(x) = 0$.

20.11 Find the following limits. (a) $\lim_{x\to a} \frac{x^2 - a^2}{x - a}$; (b) $\lim_{x\to b} \frac{\sqrt{x} - \sqrt{b}}{x - b}$, b > 0; (c) $\lim_{x\to a} \frac{x^3 - a^3}{x - a}$. Hint: $x^3 - a^3 = (x - a)(x^2 + ax + a^2)$.

Solution. (a) Since $\frac{x^2 - a^2}{x - a} = \frac{(x + a)(x - a)}{x - a} = x + a$ for $x \neq a$, we have $\lim_{x \to a} \frac{x^2 - a^2}{x - a} = \lim_{x \to a} (x + a) = 2a.$

(b) Since
$$\frac{\sqrt{x}-\sqrt{b}}{x-b} = \frac{\sqrt{x}-\sqrt{b}}{(\sqrt{x}-\sqrt{b})(\sqrt{x}+\sqrt{b})} = \frac{1}{\sqrt{x}+\sqrt{b}}$$
 for $x \neq b$, we have

$$\lim_{x \to b} \frac{\sqrt{x}-\sqrt{b}}{x-b} = \lim_{x \to b} \frac{1}{\sqrt{x}+\sqrt{b}} = \frac{1}{2\sqrt{b}}.$$
(c) Since $\frac{x^3-a^3}{x-a} = \frac{(x-a)(x^2+ax+a^2)}{x-a} = x^2 + ax + a^2$, we get

$$\lim_{x \to a} \frac{x^3-a^3}{x-a} = \lim_{x \to a} (x^2 + ax + a^2) = 3a^2.$$

20.16 Suppose that the limits $L_1 = \lim_{x \to a^+} f_1(x)$ and $L_2 = \lim_{x \to a^+} f_2(x)$ exist.

(a) Show if $f_1(x) \leq f_2(x)$ for all x in some interval (a, b), then $L_1 \leq L_2$. Hint: You may use the results on limits of sequences: If $x_n \to L_1$ and $y_n \to L$, and $x_n \leq y_n$ for each n, then $L_1 \leq L_2$. See Exercises 8.9 and 9.9.

(b) Suppose that, in fact, $f_1(x) < f_2(x)$ for all x in some interval (a, b). Can you conclude that $L_1 < L_2$?

Proof. (a) Let (x_n) be a sequence in (a,b) such that $x_n \to a$. Then $f_1(x_n) \to L_1$, $f_2(x_n) \to L_2$, and $f_1(x_n) \leq f_2(x_n)$ for each n. By Exercises 8.9 and 9.9, we get $L_1 \leq L_2$. (b) We can not conclude $L_1 < L_2$ even if $f_1(x) < f_2(x)$ for all x in some interval (a,b). For example, $a = 0, b = 1, f_1(x) = 0$ and $f_2(x) = x$ on (0,1). Then $f_1(x) < f_2(x)$ on (0,1), but $\lim_{x\to 0^+} f_1(x) = 0 = \lim_{x\to 0^+} f_2(x)$.

20.17 Show that if $\lim_{x\to a^+} f_1(x) = \lim_{x\to a^+} f_3(x) = L$ and if $f_1(x) \leq f_2(x) \leq f_3(x)$ for all x in some interval (a, b), then $\lim_{x\to a^+} f_2(x) = L$. Hint: When $L \in \mathbb{R}$, use Exercise 8.5 (Squeeze Lemma for sequences, Theorem 1 in the lecture notes of Sep 16-18). When $L = +\infty$ or $-\infty$, use Exercise 9.9 (the first problem in Homework 4).

Proof. We first prove the following statement. If $x_n \leq z_n \leq y_n$ for all n, and $\lim x_n = L = \lim y_n$, where L could be a real number or $+\infty$ or $-\infty$, then $\lim z_n = L$. If $L \in \mathbb{R}$, then this follows from the squeeze lemma (Exercise 8.5); if $L = +\infty$, since $x_n \leq z_n$ for each n, and $x_n \to +\infty$, by Exercise 9.9 (a), $z_n \to +\infty$; if $L = -\infty$, since $z_n \leq y_n$ for each n, and $y_n \to -\infty$, by Exercise 9.9 (b), $z_n \to -\infty$.

Now we return to the proof. Suppose (x_n) is a sequence in (a, b) such that $x_n \to a$. From $\lim_{x\to a^+} f_1(x) = \lim_{x\to a^+} f_3(x) = L$ we know that $\lim_{x\to a^+} f_1(x) = \lim_{x\to a^+} f_3(x) = L$. From that $f_1(x) \leq f_2(x) \leq f_3(x)$ on (a, b) we know that $f_1(x_n) \leq f_2(x_n) \leq f_3(x_n)$ for each n. By the above paragraph, we get $f_2(x_n) \to L$. Since this holds for any sequence (x_n) in (a, b) with $x_n \to a$, we get $\lim_{x\to a^+} f_2(x) = L$.