1. Prove the inequality:

$$
\|x|-|y| \| \leq|x-y|, \quad \forall x, y \in \mathbb{R}
$$

Proof. Since $x=y+(x-y)$, by triangle inequality, we have $|x| \leq|y|+|x-y|$. So

$$
|x|-|y| \leq|x-y| .
$$

Swapping x and y, we get

$$
|y|-|x| \leq|y-x|=|x-y|,
$$

where the equality holds because $y-x=-(x-y)$. Since $\| x|-|y||$ equals either $|x|-|y|$ or $-(|x|-|y|)=|y|-|x|$, both of which are $\leq|x-y|$, we get the conclusion.
2. (a) For a nonempty set $S \subseteq \mathbb{R}$, define $\min S$ and $\inf S$.
(b) Let A and B be two nonempty subsets of \mathbb{R}. Prove that

$$
\inf (A \cup B)=\min \{\inf A, \inf B\}
$$

Here if $\inf A$ or $\inf B$ equals $-\infty$, then we understand $\min \{-\infty,-\infty\}$ and $\min \{-\infty, x\}$ for any $x \in \mathbb{R}$ as $-\infty$.

Solution. (a) $a=\min S$ if $a \in S$ and $a \leq s$ for every $s \in S$. If S is bounded below, $\inf S$ is the biggest lower bound of S; if S is not bounded below, $\inf S$ is $-\infty$.
(b) We use a homework problem: For nonempty subsets $S \subset T$ of $\mathbb{R}, \inf S \geq \inf T$. Since $A \subset A \cup B$, we get $\inf A \geq \inf (A \cup B)$. Similarly, $\inf B \geq \inf (A \cup B)$. Since $\min \{\inf A, \inf B\}$ equals either $\inf A$ or $\inf B$, we get $\min \{\inf A, \inf B\} \geq \inf (A \cup B)$. We need to prove an inequality in the opposite direction. For any $a \in A$, we have $a \geq \inf A \geq \min \{\inf A, \inf B\}$. For any $b \in B$, we have $b \geq \inf B \geq \min \{\inf A, \inf B\}$. So for any $x \in A \cup B$, we have $x \geq \min \{\inf A$, $\inf B\}$. This implies that $\inf (A \cup B) \geq$ $\min \{\inf A, \inf B\}$, as desired.
3. (a) When do we say that a sequence $\left(s_{n}\right)$ converges to s ?
(b) Determine the limit of the sequence $s_{n}=\frac{\cos \left(n^{2}\right)}{2^{n}}$ and prove your claim.

Solution. (a) We say that (s_{n}) converges to s if for any $\varepsilon>0$, there is $N \in \mathbb{N}$, such that for any $n>N$, we have $\left|s_{n}-s\right|<\varepsilon$.
(b) We may use squeeze lemma. Since $\left|\cos \left(n^{2}\right)\right| \leq 1$, we have $-\frac{1}{2^{n}} \leq s_{n} \leq \frac{1}{2^{n}}$. Since $0<\frac{1}{2}<1$, by a theorem in the book, we have $\frac{1}{2^{n}}=\left(\frac{1}{2}\right)^{n} \rightarrow 0$. So $-\frac{1}{2^{n}} \rightarrow 0$ as well. Since $-\frac{1}{2^{n}} \leq s_{n} \leq \frac{1}{2^{n}}$ for every n, we get $s_{n} \rightarrow 0$ by squeeze lemma.
4. (a) Give the definition of $\lim \sup s_{n}$ for a sequence $\left(s_{n}\right)$.
(b) Prove that for any two sequences of nonnegative numbers $\left(s_{n}\right)$ and $\left(t_{n}\right)$,

$$
\lim \sup \left(s_{n}+t_{n}\right) \leq \lim \sup s_{n}+\lim \sup t_{n}
$$

Here if $\lim \sup s_{n}$ or $\lim \sup t_{n}=+\infty$, we understand $(+\infty)+(+\infty)$ and $(+\infty)+x$ for any $x \in \mathbb{R}$ as $+\infty$.

Solution. (a) First, we define a sequence $v_{N}=\sup \left\{s_{n}: n>N\right\}, N \in \mathbb{N}$. Then either $v_{N}=+\infty$ for all N, or $\left(v_{N}\right)$ is a decreasing sequence of real numbers. In the former case, $\lim \sup s_{n}$ is defined to be $+\infty$. In the latter case, $\lim \sup s_{n}$ is defined to be $\lim _{N \rightarrow \infty} v_{N}$, which always exists because $\left(v_{N}\right)$ is decreasing.
(b) If $\left(s_{n}\right)$ or $\left(t_{n}\right)$ is not bounded above, then at least one of $\lim \sup s_{n}$ and $\limsup t_{n}$ is $+\infty$. In that case, the inequality is trivial. Now we suppose that both $\left(s_{n}\right)$ and $\left(t_{n}\right)$ are bounded above. Then $\left(s_{n}+t_{n}\right)$ is also bounded above. So for every $N \in \mathbb{N}$,

$$
\sup \left\{s_{n}+t_{n}: n>N\right\}, \quad \sup \left\{s_{n}: n>N\right\}, \quad \sup \left\{t_{n}: n>N\right\}
$$

are all finite numbers. Since $s_{n}, t_{n} \geq 0$ for all n, these numbers are nonnegative. So the sequences $\left(\sup \left\{s_{n}+t_{n}: n>N\right\}\right)_{N},\left(\sup \left\{s_{n}: n>N\right\}\right)_{N},\left(\sup \left\{s_{n}: n>N\right\}\right)_{N}$ are all decreasing and bounded below by 0 . Thus they respectively converge to $\lim \sup \left(s_{n}+t_{n}\right)$, $\lim \sup s_{n}, \lim \sup t_{n}$. Fix $N \in \mathbb{N}$. Then for every $n>N, s_{n} \leq \sup \left\{s_{n}: n>N\right\}$ and $t_{n} \leq \sup \left\{t_{n}: n>N\right\}$, and so $s_{n}+t_{n} \leq \sup \left\{s_{n}: n>N\right\}+\sup \left\{t_{n}: n>N\right\}$. Since this holds for any $n>N$, we get

$$
\sup \left\{s_{n}+t_{n}: n>N\right\} \leq \sup \left\{s_{n}: n>N\right\}+\sup \left\{t_{n}: n>N\right\} .
$$

Since the LHS converges to $\lim \sup \left(s_{n}+t_{n}\right)$, and the RHS converges to $\lim \sup s_{n}+$ $\lim \sup t_{n}$, we get the conclusion.
5. Let $\left(s_{n}\right)$ be a sequence defined recursively by $s_{1}=10$ and $s_{n}=\frac{1}{4}\left(s_{n-1}+6\right)$.
(a) Show that $\left(s_{n}\right)$ is decreasing and satisfies $s_{n}>2$ for all n.
(b) Does $\left(s_{n}\right)$ converge? If so, what is the limit? Justify your answer carefully.

Proof. (a) We use induction to show that $s_{n} \geq s_{n+1}$ and $s_{n}>2$ for all $n \in \mathbb{N}$. We calculate $s_{2}=\frac{1}{4}\left(s_{1}+6\right)=\frac{1}{4}(10+6)=4$. When $n=1$, we have $s_{1}=10>4=s_{2}$ and $s_{1}=10>2$. Suppose the statements hold for n. We now show that they also hold for $n+1$. In fact, we have

$$
s_{n+1}=\frac{1}{4}\left(s_{n}+6\right)>\frac{1}{4}(2+6)=2,
$$

and

$$
s_{n+1}-s_{n+2}=\frac{1}{4}\left(s_{n}+6\right)-\frac{1}{4}\left(s_{n+1}+6\right)=\frac{1}{4}\left(s_{n}-s_{n+1}\right) \geq 0 .
$$

So by induction $s_{n} \geq s_{n+1}$ and $s_{n}>2$ hold for all $n \in \mathbb{N}$. This means that $\left(s_{n}\right)$ is a decreasing sequence.
(b) Since $\left(s_{n}\right)$ is decreasing and bounded below, it converges. Let $s=\lim s_{n}$. Then $s=\lim s_{n-1}$. From $s_{n}=\frac{1}{4}\left(s_{n-1}+6\right)$ and limit theorems, we get $s=\frac{1}{4}(s+6)$. Solving this equation we get $s=2$. So the limit of $\left(s_{n}\right)$ is 2 .

