
MTH 320 Section 004 Midterm 1 Sample

1. Prove the inequality:
||x| − |y|| ≤ |x− y|, ∀x, y ∈ R.

Proof. Since x = y + (x− y), by triangle inequality, we have |x| ≤ |y|+ |x− y|. So

|x| − |y| ≤ |x− y|.

Swapping x and y, we get

|y| − |x| ≤ |y − x| = |x− y|,

where the equality holds because y−x = −(x−y). Since ||x|−|y|| equals either |x|−|y|
or −(|x| − |y|) = |y| − |x|, both of which are ≤ |x− y|, we get the conclusion.

2. (a) For a nonempty set S ⊆ R, define minS and inf S.

(b) Let A and B be two nonempty subsets of R. Prove that

inf(A ∪B) = min{inf A, inf B}.

Here if inf A or inf B equals −∞, then we understand min{−∞,−∞} and min{−∞, x}
for any x ∈ R as −∞.

Solution. (a) a = minS if a ∈ S and a ≤ s for every s ∈ S. If S is bounded below,
inf S is the biggest lower bound of S; if S is not bounded below, inf S is −∞.

(b) We use a homework problem: For nonempty subsets S ⊂ T of R, inf S ≥ inf T .
Since A ⊂ A ∪ B, we get inf A ≥ inf(A ∪ B). Similarly, inf B ≥ inf(A ∪ B). Since
min{inf A, inf B} equals either inf A or inf B, we get min{inf A, inf B} ≥ inf(A ∪ B).
We need to prove an inequality in the opposite direction. For any a ∈ A, we have
a ≥ inf A ≥ min{inf A, inf B}. For any b ∈ B, we have b ≥ inf B ≥ min{inf A, inf B}.
So for any x ∈ A ∪ B, we have x ≥ min{inf A, inf B}. This implies that inf(A ∪ B) ≥
min{inf A, inf B}, as desired.

3. (a) When do we say that a sequence (sn) converges to s?

(b) Determine the limit of the sequence sn = cos(n2)
2n

and prove your claim.

Solution. (a) We say that (sn) converges to s if for any ε > 0, there is N ∈ N, such
that for any n > N , we have |sn − s| < ε.

(b) We may use squeeze lemma. Since | cos(n2)| ≤ 1, we have − 1
2n
≤ sn ≤ 1

2n
. Since

0 < 1
2
< 1, by a theorem in the book, we have 1

2n
= (1

2
)n → 0. So − 1

2n
→ 0 as well.

Since − 1
2n
≤ sn ≤ 1

2n
for every n, we get sn → 0 by squeeze lemma.
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4. (a) Give the definition of lim sup sn for a sequence (sn).

(b) Prove that for any two sequences of nonnegative numbers (sn) and (tn),

lim sup(sn + tn) ≤ lim sup sn + lim sup tn.

Here if lim sup sn or lim sup tn = +∞, we understand (+∞) + (+∞) and (+∞) +x for
any x ∈ R as +∞.

Solution. (a) First, we define a sequence vN = sup{sn : n > N}, N ∈ N. Then either
vN = +∞ for all N , or (vN) is a decreasing sequence of real numbers. In the former
case, lim sup sn is defined to be +∞. In the latter case, lim sup sn is defined to be
limN→∞ vN , which always exists because (vN) is decreasing.

(b) If (sn) or (tn) is not bounded above, then at least one of lim sup sn and lim sup tn
is +∞. In that case, the inequality is trivial. Now we suppose that both (sn) and (tn)
are bounded above. Then (sn + tn) is also bounded above. So for every N ∈ N,

sup{sn + tn : n > N}, sup{sn : n > N}, sup{tn : n > N}

are all finite numbers. Since sn, tn ≥ 0 for all n, these numbers are nonnegative. So the
sequences (sup{sn + tn : n > N})N , (sup{sn : n > N})N , (sup{sn : n > N})N are all
decreasing and bounded below by 0. Thus they respectively converge to lim sup(sn+tn),
lim sup sn, lim sup tn. Fix N ∈ N. Then for every n > N , sn ≤ sup{sn : n > N} and
tn ≤ sup{tn : n > N}, and so sn + tn ≤ sup{sn : n > N}+ sup{tn : n > N}. Since this
holds for any n > N , we get

sup{sn + tn : n > N} ≤ sup{sn : n > N}+ sup{tn : n > N}.

Since the LHS converges to lim sup(sn + tn), and the RHS converges to lim sup sn +
lim sup tn, we get the conclusion.

5. Let (sn) be a sequence defined recursively by s1 = 10 and sn = 1
4
(sn−1 + 6).

(a) Show that (sn) is decreasing and satisfies sn > 2 for all n.

(b) Does (sn) converge? If so, what is the limit? Justify your answer carefully.

Proof. (a) We use induction to show that sn ≥ sn+1 and sn > 2 for all n ∈ N. We
calculate s2 = 1

4
(s1 + 6) = 1

4
(10 + 6) = 4. When n = 1, we have s1 = 10 > 4 = s2 and

s1 = 10 > 2. Suppose the statements hold for n. We now show that they also hold for
n + 1. In fact, we have

sn+1 =
1

4
(sn + 6) >

1

4
(2 + 6) = 2,

and

sn+1 − sn+2 =
1

4
(sn + 6)− 1

4
(sn+1 + 6) =

1

4
(sn − sn+1) ≥ 0.
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So by induction sn ≥ sn+1 and sn > 2 hold for all n ∈ N. This means that (sn) is a
decreasing sequence.

(b) Since (sn) is decreasing and bounded below, it converges. Let s = lim sn. Then
s = lim sn−1. From sn = 1

4
(sn−1 + 6) and limit theorems, we get s = 1

4
(s + 6). Solving

this equation we get s = 2. So the limit of (sn) is 2.
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