1. (a) $[4 \mathrm{pts}]$ Let $f: \mathbb{R} \rightarrow \mathbb{R}$. What does it mean to say that f is continuous at x_{0} ?
(b) $[6 \mathrm{pts}]$ A set S is said to be dense in \mathbb{R} if every open interval contains a point in S. (For example, both the rationals and the irrationals are dense in \mathbb{R}.) Suppose S is dense in $\mathbb{R}, f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous on \mathbb{R}, and $f(s)=g(s)$ for every $s \in S$. Prove that $f(x)=g(x)$ for every $x \in \mathbb{R}$.

Solution. (a) We say that f is continuous at x_{0} if for any sequence $\left(x_{n}\right)$ in \mathbb{R} with $x_{n} \rightarrow x_{0}$, we have $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$.
(b) Let $x \in \mathbb{R}$. Since S is dense, for any $n \in \mathbb{N},\left(x-\frac{1}{n}, x+\frac{1}{n}\right)$ contains an element in S. Let it be denoted by x_{n}. Then we get a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in S. Since $x-\frac{1}{n}<x_{n}<x+\frac{1}{n}$ for each n, by squeeze lemma we have $x_{n} \rightarrow x$. For each n, since $x_{n} \in S$, we have $f\left(x_{n}\right)=g\left(x_{n}\right)$. Since f and g are continuous at x, we have

$$
f(x)=\lim f\left(x_{n}\right)=\lim g\left(x_{n}\right)=g(x) .
$$

This is true for every $x \in \mathbb{R}$. So $f(x)=g(x)$ for every $x \in \mathbb{R}$.
2. For each of the following, either give an example of a power series with the given properties, or prove that one cannot exist. The center does not have to be 0 .
(a) [3pts.] A power series with interval of convergence (0,2].
(b) [4pts.] A power series which converges uniformly on its interval of convergence.
(c) [3pts.] A power series with interval of convergence $(-2,2)$.
solution. (a) The series $\sum \frac{(-1)^{n} x^{n}}{n}$ has radius $R=1$ because $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{n}{n+1} \rightarrow 1$. At $x=$ -1 , the series becomes $\sum \frac{1}{n}$, which converges. At $x=1$, the series becomes $\sum \frac{(-1)^{n}}{n}$, which converges by the alternative series test. So the exact interval of convergence is $(-1,1]$. Note that $(0,2]$ is the translation of $(-1,1]$ by 1 to the right. So $\sum \frac{(-1)^{n}(x-1)^{n}}{n}$ has interval of convergence $(0,2]$.
(b) The series $\sum \frac{x^{n}}{n^{2}}$ has radius $R=1$ because $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{n^{2}}{(n+1)^{2}} \rightarrow 1$. We now show that the series converges uniformly on $[-1,1]$, and so the interval of convergence is $[-1,1]$. The uniform convergence follows from Weierstrass M-test because $\left|\frac{x^{n}}{n^{2}}\right| \leq \frac{1}{n^{2}}$ for all $x \in[-1,1]$ and $n \in \mathbb{N}$, and $\sum \frac{1}{n^{2}}$ converges.
(c) The series $\sum x^{n}$ has radius $R=1$ because $\left|a_{n}\right|^{1 / n}=1 \rightarrow 1$. At $x=1$ or $x=-1$, $\left|x^{n}\right|=1 \nrightarrow 0$, which implies that $x^{n} \nrightarrow 0$. So $\sum x^{n}$ does not converge at 1 or -1 . Then the interval of convergence of $\sum x^{n}$ is $(-1,1)$. Note that $x \in(-2,2)$ if and only if $x / 2 \in(-1,1)$. So the series $\sum \frac{x^{n}}{2^{n}}=\sum(x / 2)^{n}$ has interval of convergence $(-2,2)$.
3. (a) [4pts] Let $f: \mathbb{R} \rightarrow \mathbb{R}$. What does it mean to say that f is differentiable at x_{0} ?
(b) $[6 \mathrm{pts}]$ Prove that $f(x)=\cos \left(\sin \left(x^{3}\right)+e^{\frac{1}{x^{2}}}\right)$ is differentiable on $\mathbb{R} \backslash\{0\}$, and compute $f^{\prime}(x)$. Carefully justify each step.

Solution. (a) We say that f is differentiable at x_{0} if the limit

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

exists and is finite.
(b) Since x^{3} and $\sin x$ are differentiable on \mathbb{R} with $\frac{d}{d x}\left(x^{3}\right)=3 x^{2}$ and $\sin ^{\prime} x=\cos x$, by the chain rule, $\sin \left(x^{3}\right)$ is differentiable on \mathbb{R} with

$$
\frac{d}{d x} \sin \left(x^{3}\right)=\cos \left(x^{3}\right) \cdot 3 x^{2}
$$

Since $\frac{1}{x^{2}}=x^{-2}$ is differentiable on $\mathbb{R} \backslash\{0\}$ with $\frac{d}{d x}\left(x^{-2}\right)=-2 x^{-3}=\frac{-2}{x^{3}}$, and e^{x} is differentiable on \mathbb{R} with $\frac{d}{d x} e^{x}=e^{x}$, by the chain rule, $e^{\frac{1}{x^{2}}}$ is differentiable on $\mathbb{R} \backslash\{0\}$, and $\frac{d}{d x} e^{\frac{1}{x^{2}}}=e^{\frac{1}{x^{2}}} \cdot \frac{-2}{x^{3}}$. By the sum rule, $\sin \left(x^{3}\right)+e^{\frac{1}{x^{2}}}$ is differentiable on $\mathbb{R} \backslash\{0\}$ with derivative $\cos \left(x^{3}\right) \cdot 3 x^{2}+e^{\frac{1}{x^{2}}} \cdot \frac{-2}{x^{3}}$. Since $\cos x$ is differentiable on \mathbb{R} with $\cos ^{\prime} x=-\sin x$, by the chain rule, f is differentiable on $\mathbb{R} \backslash\{0\}$, and

$$
f^{\prime}(x)=-\sin \left(\sin \left(x^{3}\right)+e^{\frac{1}{x^{2}}}\right) \cdot\left(\cos \left(x^{3}\right) \cdot 3 x^{2}+e^{\frac{1}{x^{2}}} \cdot \frac{-2}{x^{3}}\right)
$$

4. (a) [4pts] What is the Weierstrass M-test?
(b) $[6 \mathrm{pts}]$ Suppose that a power series $\sum a_{n} x^{n}$ has radius of convergence $R>0$. Let $0<R_{0}<R$. Prove that the series $\sum a_{n} x^{n} \cos \left(x^{2}\right)$ converges uniformly on $\left[-R_{0}, R_{0}\right]$ to a continuous function.

Solution. (a) Suppose $\left(g_{n}\right)$ is a sequence of functions defined on S and $\left(M_{n}\right)$ is a sequence of nonnegative real numbers such that $\sum M_{n}$ converges. If $\left|g_{n}(x)\right| \leq M_{n}$ for every $x \in S$ and $n \in \mathbb{N}$, then $\sum g_{n}$ converges uniformly on S.
(b) By the definition of R, we know that $\sum\left|a_{n}\right| x^{n}$ also have radius R. Since $\left|R_{0}\right|=$ $R_{0}<R$, we have that $\sum\left|a_{n}\right| R_{0}^{n}$ converges. Let $g_{n}(x)=a_{n} x^{n} \cos \left(x^{2}\right), M_{n}=\left|a_{n}\right| R_{0}^{n}$ and $S=\left[-R_{0}, R_{0}\right]$. We have shown that $\sum M_{n}$ converges. Note that for any n and $x \in S,\left|g_{n}(x)\right|=\left|a_{n} x^{n} \cos \left(x^{2}\right)\right| \leq\left|a_{n}\right||x|^{n} \leq\left|a_{n}\right| R_{0}^{n}=M_{n}$. By Weierstrass M-test, $\sum a_{n} x^{n} \cos \left(x^{2}\right)=\sum g_{n}(x)$ converges uniformly on $S=\left[-R_{0}, R_{0}\right]$. Finally, since each g_{n} is continuous on S, the uniform limit of the series $\sum g_{n}$ should also be continuous on S.
5. Let $\left(a_{n}\right)$ be a sequence of positive numbers such that $\lim a_{n}=0$. (a) [5pts.] Give an example to show that $\sum a_{n}$ need not converge. (b) [5pts.] Prove that there exists a subsequence $\left(a_{n_{k}}\right)$ of $\left(a_{n}\right)$ such that $\sum a_{n_{k}}$ converges.

Solution. (a) Let $a_{n}=\frac{1}{n}, n \in \mathbb{N}$. We know that $\frac{1}{n} \rightarrow 0$ but $\sum \frac{1}{n}$ diverges.
(b) We will prove that there exist $1 \leq n_{1}<n_{2}<\cdots$ such that $\left|a_{n_{k}}\right| \leq \frac{1}{k^{2}}$ for each k. Then since $\sum \frac{1}{k^{2}}$ converges, by comparison test, $\sum a_{n_{k}}$ would converge. We construct those n_{k} 's inductively. Since $a_{n} \rightarrow 0$, letting $\varepsilon=1$, we find that there is $N_{1} \in \mathbb{N}$ such that for $n>N_{1},\left|a_{n}-0\right|<1$. Taking $n_{1}=N_{1}+1$. Then $\left|a_{n_{1}}\right|<\frac{1}{1^{2}}$. Suppose we have found $1 \leq n_{1}<\cdots<n_{m}$ such that $\left|a_{n_{k}}\right| \leq \frac{1}{k^{2}}$ for all $1 \leq k \leq m$. Letting $\varepsilon=\frac{1}{(m+1)^{2}}$ and using $a_{n} \rightarrow 0$, we find that there is $N_{m+1} \in \mathbb{N}$ such that for $n>N_{m+1},\left|a_{n}-0\right|<\frac{1}{(m+1)^{2}}$. Let $n_{m+1}=\max \left\{n_{m}, N_{m+1}\right\}+1$. Then $n_{m+1}>n_{m}$ and $n_{m+1}>N_{m+1}$. The latter implies that $\left|a_{n_{m+1}}\right| \leq \frac{1}{(m+1)^{2}}$. So we now have $1 \leq n_{1}<\cdots<n_{m}<n_{m+1}$ such that $\left|a_{n_{k}}\right| \leq \frac{1}{k^{2}}$ for all $1 \leq k \leq m+1$. By induction, we get the desired subsequence $\left(a_{n_{k}}\right)$.

