
MTH 320 Section 004 Midterm 2 Sample

1. (a) [4pts] Let f : R→ R. What does it mean to say that f is continuous at x0?

(b) [6pts] A set S is said to be dense in R if every open interval contains a point in
S. (For example, both the rationals and the irrationals are dense in R.) Suppose S is
dense in R, f, g : R→ R are continuous on R, and f(s) = g(s) for every s ∈ S. Prove
that f(x) = g(x) for every x ∈ R.

Solution. (a) We say that f is continuous at x0 if for any sequence (xn) in R with
xn → x0, we have f(xn)→ f(x0).

(b) Let x ∈ R. Since S is dense, for any n ∈ N, (x− 1
n
, x+ 1

n
) contains an element in S.

Let it be denoted by xn. Then we get a sequence (xn)n∈N in S. Since x− 1
n
< xn < x+ 1

n

for each n, by squeeze lemma we have xn → x. For each n, since xn ∈ S, we have
f(xn) = g(xn). Since f and g are continuous at x, we have

f(x) = lim f(xn) = lim g(xn) = g(x).

This is true for every x ∈ R. So f(x) = g(x) for every x ∈ R.

2. For each of the following, either give an example of a power series with the given
properties, or prove that one cannot exist. The center does not have to be 0.

(a) [3pts.] A power series with interval of convergence (0, 2].

(b) [4pts.] A power series which converges uniformly on its interval of convergence.

(c) [3pts.] A power series with interval of convergence (−2, 2).

solution. (a) The series
∑ (−1)nxn

n
has radius R = 1 because |an+1

an
| = n

n+1
→ 1. At x =

−1, the series becomes
∑

1
n
, which converges. At x = 1, the series becomes

∑ (−1)n
n

,
which converges by the alternative series test. So the exact interval of convergence is
(−1, 1]. Note that (0, 2] is the translation of (−1, 1] by 1 to the right. So

∑ (−1)n(x−1)n
n

has interval of convergence (0, 2].

(b) The series
∑

xn

n2 has radius R = 1 because |an+1

an
| = n2

(n+1)2
→ 1. We now show that

the series converges uniformly on [−1, 1], and so the interval of convergence is [−1, 1].
The uniform convergence follows from Weierstrass M-test because |xn

n2 | ≤ 1
n2 for all

x ∈ [−1, 1] and n ∈ N, and
∑

1
n2 converges.

(c) The series
∑

xn has radius R = 1 because |an|1/n = 1 → 1. At x = 1 or x = −1,
|xn| = 1 6→ 0, which implies that xn 6→ 0. So

∑
xn does not converge at 1 or −1. Then

the interval of convergence of
∑

xn is (−1, 1). Note that x ∈ (−2, 2) if and only if
x/2 ∈ (−1, 1). So the series

∑
xn

2n
=

∑
(x/2)n has interval of convergence (−2, 2).



3. (a) [4pts] Let f : R→ R. What does it mean to say that f is differentiable at x0?

(b) [6pts] Prove that f(x) = cos(sin(x3)+e
1
x2 ) is differentiable on R\{0}, and compute

f ′(x). Carefully justify each step.

Solution. (a) We say that f is differentiable at x0 if the limit

lim
x→x0

f(x)− f(x0)

x− x0

exists and is finite.

(b) Since x3 and sin x are differentiable on R with d
dx

(x3) = 3x2 and sin′ x = cosx, by
the chain rule, sin(x3) is differentiable on R with

d

dx
sin(x3) = cos(x3) · 3x2.

Since 1
x2 = x−2 is differentiable on R \ {0} with d

dx
(x−2) = −2x−3 = −2

x3 , and ex is

differentiable on R with d
dx
ex = ex, by the chain rule, e

1
x2 is differentiable on R \ {0},

and d
dx
e

1
x2 = e

1
x2 · −2

x3 . By the sum rule, sin(x3) + e
1
x2 is differentiable on R \ {0} with

derivative cos(x3) ·3x2+e
1
x2 · −2

x3 . Since cosx is differentiable on R with cos′ x = − sinx,
by the chain rule, f is differentiable on R \ {0}, and

f ′(x) = − sin(sin(x3) + e
1
x2 ) · (cos(x3) · 3x2 + e

1
x2 · −2

x3
).

4. (a) [4pts] What is the Weierstrass M-test?

(b) [6pts] Suppose that a power series
∑

anx
n has radius of convergence R > 0. Let

0 < R0 < R. Prove that the series
∑

anx
n cos(x2) converges uniformly on [−R0, R0]

to a continuous function.

Solution. (a) Suppose (gn) is a sequence of functions defined on S and (Mn) is a
sequence of nonnegative real numbers such that

∑
Mn converges. If |gn(x)| ≤ Mn for

every x ∈ S and n ∈ N, then
∑

gn converges uniformly on S.

(b) By the definition of R, we know that
∑
|an|xn also have radius R. Since |R0| =

R0 < R, we have that
∑
|an|Rn

0 converges. Let gn(x) = anx
n cos(x2), Mn = |an|Rn

0

and S = [−R0, R0]. We have shown that
∑

Mn converges. Note that for any n and
x ∈ S, |gn(x)| = |anxn cos(x2)| ≤ |an||x|n ≤ |an|Rn

0 = Mn. By Weierstrass M-test,∑
anx

n cos(x2) =
∑

gn(x) converges uniformly on S = [−R0, R0]. Finally, since each
gn is continuous on S, the uniform limit of the series

∑
gn should also be continuous

on S.



5. Let (an) be a sequence of positive numbers such that lim an = 0. (a) [5pts.] Give an
example to show that

∑
an need not converge. (b) [5pts.] Prove that there exists a

subsequence (ank
) of (an) such that

∑
ank

converges.

Solution. (a) Let an = 1
n
, n ∈ N. We know that 1

n
→ 0 but

∑
1
n

diverges.

(b) We will prove that there exist 1 ≤ n1 < n2 < · · · such that |ank
| ≤ 1

k2
for each k.

Then since
∑

1
k2

converges, by comparison test,
∑

ank
would converge. We construct

those nk’s inductively. Since an → 0, letting ε = 1, we find that there is N1 ∈ N such
that for n > N1, |an − 0| < 1. Taking n1 = N1 + 1. Then |an1| < 1

12
. Suppose we have

found 1 ≤ n1 < · · · < nm such that |ank
| ≤ 1

k2
for all 1 ≤ k ≤ m. Letting ε = 1

(m+1)2
and

using an → 0, we find that there is Nm+1 ∈ N such that for n > Nm+1, |an−0| < 1
(m+1)2

.

Let nm+1 = max{nm, Nm+1} + 1. Then nm+1 > nm and nm+1 > Nm+1. The latter
implies that |anm+1| ≤ 1

(m+1)2
. So we now have 1 ≤ n1 < · · · < nm < nm+1 such

that |ank
| ≤ 1

k2
for all 1 ≤ k ≤ m + 1. By induction, we get the desired subsequence

(ank
).


