Do not attempt to apply the limit theorems for finite limit we have learned before to infinite
limits. Instead, we now derive some theorems for lim s, = +00 or —oo, which will be useful.

Lemma 1 (Exercise 9.10 (b)). s, — —oo if and only if —s,, — +o0.

Proof. Suppose s, — —oo. Let M > 0. Then —M < 0. So there is N € N such that for n > N,
S$p < —M, which implies that —s,, > M. So we get s,, = 4+00. On the other hand, assume
S$p — +00. Let M < 0. Then —M > 0. So there is N € N such that for n > N, s, > —M,
which implies that —s, < M. So we get —s,, = —o0. O

Theorem 1 (Theorem 9.9). If lims, = +oo and limt, = 400 or limt, = a € (0,00), then
lim(s,ty) = 400.

Proof. If t,, — +o00, then there is N; € N such that for n > N;, ¢, > 1. If ¢, — a € (0,00),
then by taking ¢ = &, we see that there is N; € N such that for n > Ny, |t,, — t| < §, which
implies that ¢, > a — § = § > 0. In either case, there are b € (0,00) and N; € N such that
t, > bforn > Ny. Let M > 0. Since s, — +o0, there is Ny € N such that for n > N,

Sp > M/b. Let N = max{Ny, Ns}. If n > N, then ¢, > b and s,, > M /b, and so sut, > M.

Thus, spt, — 4o00. O
Corollary 1. If lims, = —oco and limt, = +oo or limt, = a € (0,400), then lim(s,t,) =
—o00. Iflims, = +o00 and limt, = —co or limt, = a € (—00,0), then lim(s,t,) = —oco. If
lims,, = —o0 and limt, € —o0 or limt, = a € (—00,0), then lim(s,t,) = +oo.

Proof. This follows from Lemma [I] and Theorem 9.9. O

Theorem 2 (Exercise 9.11). (i) If s,, = 400 and (t,,) is bounded below, then s, + t, — +00.
(i) If s, — —o0 and (t,) is bounded above, then s, + t, — —oo. (iii) If s, — +oo and (t,)
converges or diverges to +oo, then s, + t, — +oo. (w) If s, = —oo and (t,) converges or
diverges to —oo, then s, + t, — —oo.

Proof. (i) There is L € R such that ¢, > L for all n. Let M > 0. There is M > 0 such that
Mg > M — L. Since s, — +00, there is N € N such that n > N implies that s, > M;, which
in turn implies that s, + ¢, > Mg+ L > M. (ii) is similar to (i). (iii) follows from (i) because
when (t,,) converges or diverges to 400, it is bounded below. (iv) follows from (ii) in a similar
way. O

Theorem 3 (Theorem 9.10). (i) For a positive sequence (Sy,), sp — 400 if and only if é — 0.

(ii) For a negative sequence (sy), sp, — —o0 if and only if s% — 0.

Proof. (i) First suppose s,, — +00. Let € > 0. Then % > 0. So there is N € N such that for
n >N, s, > %, which implies that ]é -0 = é < e. So we get i — 0. Second, suppose
$—>0. Let M > 0. Thenﬁ > 0. So there is N € N such that for n > N, i:|si—0| <ﬁ,

which implies that s, > M. So we get s, — +o00. (ii) follows from (i) and Lemma O



Remark 1. If we do not assume that (s,) is a positive sequence, we can still conclude that
1/sp — 0 from s, — 4o00. This is because we have s, > 0 for n big enough. Here 1/s,, may
not be defined for finitely many n, but that does not affect the limit. Similarly, s, — —oco also
implies that 1/s,, — 0. But 1/s,, — 0 does not imply s,, — +oc or s, — —oo. The sequence
(sn) may have alternative signs. Consider the example s,, = (—1)"n.

Theorem 4. If s, — 400, then for any r € Q with r > 0, s], = +o00.

Proof. Let M > 0. Then M'/" > 0. Since s,, — +00, there is N € N such that for n > N,
$p > MY" which implies that sy > M. ]

Remark 2. We may understand the above propositions formally as
(£00) X (£o0) = 400, (£00) X (Foo) = —00;

a(>0) X (£o0) = £oo, a(<0) X (£oo) = Foo;
(£o0) + (£o0) = (£0), a+ (o) = too;

1 1
o =0% o=doo, (4%0) =400, 7 >0,
There are no results about 0 - (00) or (+00) + (—00).

Example 1. We have limn? = +o0, lim(—n) = —oo, lim 2" = +o0, and lim(y/n + 7) = +oo.
To see this, recall that limn = +oo. Using the product theorem (+00) x (+00) = +o0, we
get limn? = +oo. Using the theorem (—1) x (+00) = —o0, we get lim(—n) = —oo. Using
the theorems (+00)'/? = 400 and (+00) + a = +o0, we get lim(y/n + 7) = +oo. Finally,
since 2" > 0 and 3= = (1)" — 0 (because 0 < £ < 1), using the theorem 0% = 400, we get
lim 2" = +4-o0.
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Example 2. Show * -5 = +oo0.

Solution. Since ’ijf’ > 0 for all n, it suffices to show that :2113 — 0. This is the case because

n+1_1/n+1/n?_> 0+0*
n?2+3 14 3/n? 1+3%02

Monotone Sequences

Definition 1. A sequence (s,) is called an increasing sequence if s, < s,41 for all n, and is
called a decreasing sequence if s, > s,y for all n. If (s,) is increasing, then for any n < m,
Sn < Sm. If (s,,) is decreasing, then for any n < m, s, > S;. An increasing or decreasing
sequence is called a monotone sequence.



Remark 3. An increasing sequence is bounded below: the first element is a lower bound. A
decreasing sequence is bounded above: the first element is an upper bound.

Example 3. The sequence (n) is increasing. The sequences (—n) and (1) are decreasing. The
sequence ((—1)™) is neither increasing or decreasing.

Theorem 5 (Theorems 10.2, 10.4, 10.5). (i) If(sy,) is increasing, then lim s, exists and equals
sup{s, : n € N}. If (s,,) is bounded above, then (s,) converges.

(ii) If (spn) is decreasing, then lims, ezists and equals inf{s, : n € N}. If (s,) is bounded
below, then (s,) converges.

Proof. (i) Let S = {s, : n € N} and s = supS. Consider two cases. Case 1. S is bounded
above. In this case s € R is the smallest upper bound of S. Let ¢ > 0. Since s is the smallest
upper bound of S, s — ¢ is not an upper bound of S. Thus, S contains an element greater than
s—e. This means, for some N € N, we have sy > s—e. Since (s,) is increasing, for any n > N,
Sp > Sy > s —e. On the other hand, s, < s for all n € N since s is an upper bound of S. So
for any n > N, s —e < s, < s, which implies that |s,, — s| < e. Thus, (s,) converges to s. Case
2. S is not bounded above. Then s = 4+00. Let M > 0. Since S is not bounded above, M is
not an upper bound of S. So S contains an element greater than M, i.e., for some N € N, we
have sy > M. Since (s,,) is increasing, for any n > N, s, > sy > M. Thus, s, — +00 = s.
(ii) This is similar to (i). We leave it as a homework problem. O



