
Do not attempt to apply the limit theorems for finite limit we have learned before to infinite
limits. Instead, we now derive some theorems for lim sn = +∞ or −∞, which will be useful.

Lemma 1 (Exercise 9.10 (b)). sn → −∞ if and only if −sn → +∞.

Proof. Suppose sn → −∞. Let M > 0. Then −M < 0. So there is N ∈ N such that for n > N ,
sn < −M , which implies that −sn > M . So we get sn → +∞. On the other hand, assume
sn → +∞. Let M < 0. Then −M > 0. So there is N ∈ N such that for n > N , sn > −M ,
which implies that −sn < M . So we get −sn → −∞.

Theorem 1 (Theorem 9.9). If lim sn = +∞ and lim tn = +∞ or lim tn = a ∈ (0,∞), then
lim(sntn) = +∞.

Proof. If tn → +∞, then there is Nt ∈ N such that for n > Nt, tn > 1. If tn → a ∈ (0,∞),
then by taking ε = a

2 , we see that there is Nt ∈ N such that for n > Nt, |tn − t| < a
2 , which

implies that tn > a − a
2 = a

2 > 0. In either case, there are b ∈ (0,∞) and Nt ∈ N such that
tn > b for n > Nt. Let M > 0. Since sn → +∞, there is Ns ∈ N such that for n > Ns,
sn > M/b. Let N = max{Nt, Ns}. If n > N , then tn > b and sn > M/b, and so sntn > M .
Thus, sntn → +∞.

Corollary 1. If lim sn = −∞ and lim tn = +∞ or lim tn = a ∈ (0,+∞), then lim(sntn) =
−∞. If lim sn = +∞ and lim tn = −∞ or lim tn = a ∈ (−∞, 0), then lim(sntn) = −∞. If
lim sn = −∞ and lim tn ∈ −∞ or lim tn = a ∈ (−∞, 0), then lim(sntn) = +∞.

Proof. This follows from Lemma 1 and Theorem 9.9.

Theorem 2 (Exercise 9.11). (i) If sn → +∞ and (tn) is bounded below, then sn + tn → +∞.
(ii) If sn → −∞ and (tn) is bounded above, then sn + tn → −∞. (iii) If sn → +∞ and (tn)
converges or diverges to +∞, then sn + tn → +∞. (iv) If sn → −∞ and (tn) converges or
diverges to −∞, then sn + tn → −∞.

Proof. (i) There is L ∈ R such that tn > L for all n. Let M > 0. There is Ms > 0 such that
Ms > M − L. Since sn → +∞, there is N ∈ N such that n > N implies that sn > Ms, which
in turn implies that sn + tn > Ms + L > M . (ii) is similar to (i). (iii) follows from (i) because
when (tn) converges or diverges to +∞, it is bounded below. (iv) follows from (ii) in a similar
way.

Theorem 3 (Theorem 9.10). (i) For a positive sequence (sn), sn → +∞ if and only if 1
sn
→ 0.

(ii) For a negative sequence (sn), sn → −∞ if and only if 1
sn
→ 0.

Proof. (i) First suppose sn → +∞. Let ε > 0. Then 1
ε > 0. So there is N ∈ N such that for

n > N , sn > 1
ε , which implies that | 1sn − 0| = 1

sn
< ε. So we get 1

sn
→ 0. Second, suppose

1
sn
→ 0. Let M > 0. Then 1

M > 0. So there is N ∈ N such that for n > N , 1
sn

= | 1sn − 0| < 1
M ,

which implies that sn > M . So we get sn → +∞. (ii) follows from (i) and Lemma 1
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Remark 1. If we do not assume that (sn) is a positive sequence, we can still conclude that
1/sn → 0 from sn → +∞. This is because we have sn > 0 for n big enough. Here 1/sn may
not be defined for finitely many n, but that does not affect the limit. Similarly, sn → −∞ also
implies that 1/sn → 0. But 1/sn → 0 does not imply sn → +∞ or sn → −∞. The sequence
(sn) may have alternative signs. Consider the example sn = (−1)nn.

Theorem 4. If sn → +∞, then for any r ∈ Q with r > 0, srn → +∞.

Proof. Let M > 0. Then M1/r > 0. Since sn → +∞, there is N ∈ N such that for n > N ,
sn > M1/r, which implies that srn > M .

Remark 2. We may understand the above propositions formally as

(±∞)× (±∞) = +∞, (±∞)× (∓∞) = −∞;

a(> 0)× (±∞) = ±∞, a(< 0)× (±∞) = ∓∞;

(±∞) + (±∞) = (±∞), a + (±∞) = ±∞;

1

±∞
= 0±,

1

0±
= ±∞, (+∞)r = +∞, r > 0.

There are no results about 0 · (±∞) or (+∞) + (−∞).

Example 1. We have limn2 = +∞, lim(−n) = −∞, lim 2n = +∞, and lim(
√
n + 7) = +∞.

To see this, recall that limn = +∞. Using the product theorem (+∞) × (+∞) = +∞, we
get limn2 = +∞. Using the theorem (−1) × (+∞) = −∞, we get lim(−n) = −∞. Using
the theorems (+∞)1/2 = +∞ and (+∞) + a = +∞, we get lim(

√
n + 7) = +∞. Finally,

since 2n > 0 and 1
2n = (12)n → 0 (because 0 < 1

2 < 1), using the theorem 1
0+

= +∞, we get
lim 2n = +∞.

Example 2. Show n2+3
n+1 = +∞.

Solution. Since n2+3
n+1 > 0 for all n, it suffices to show that n+1

n2+3
→ 0. This is the case because

n + 1

n2 + 3
=

1/n + 1/n2

1 + 3/n2
→ 0 + 02

1 + 3 ∗ 02
= 0.

Monotone Sequences

Definition 1. A sequence (sn) is called an increasing sequence if sn ≤ sn+1 for all n, and is
called a decreasing sequence if sn ≥ sn+1 for all n. If (sn) is increasing, then for any n ≤ m,
sn ≤ sm. If (sn) is decreasing, then for any n ≤ m, sn ≥ sm. An increasing or decreasing
sequence is called a monotone sequence.
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Remark 3. An increasing sequence is bounded below: the first element is a lower bound. A
decreasing sequence is bounded above: the first element is an upper bound.

Example 3. The sequence (n) is increasing. The sequences (−n) and ( 1
n) are decreasing. The

sequence ((−1)n) is neither increasing or decreasing.

Theorem 5 (Theorems 10.2, 10.4, 10.5). (i) If (sn) is increasing, then lim sn exists and equals
sup{sn : n ∈ N}. If (sn) is bounded above, then (sn) converges.

(ii) If (sn) is decreasing, then lim sn exists and equals inf{sn : n ∈ N}. If (sn) is bounded
below, then (sn) converges.

Proof. (i) Let S = {sn : n ∈ N} and s = supS. Consider two cases. Case 1. S is bounded
above. In this case s ∈ R is the smallest upper bound of S. Let ε > 0. Since s is the smallest
upper bound of S, s− ε is not an upper bound of S. Thus, S contains an element greater than
s−ε. This means, for some N ∈ N, we have sN > s−ε. Since (sn) is increasing, for any n > N ,
sn ≥ sN > s − ε. On the other hand, sn ≤ s for all n ∈ N since s is an upper bound of S. So
for any n > N , s− ε < sn ≤ s, which implies that |sn− s| < ε. Thus, (sn) converges to s. Case
2. S is not bounded above. Then s = +∞. Let M > 0. Since S is not bounded above, M is
not an upper bound of S. So S contains an element greater than M , i.e., for some N ∈ N, we
have sN > M . Since (sn) is increasing, for any n > N , sn ≥ sN > M . Thus, sn → +∞ = s.

(ii) This is similar to (i). We leave it as a homework problem.
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