Do not attempt to apply the limit theorems for finite limit we have learned before to infinite limits. Instead, we now derive some theorems for $\lim s_{n}=+\infty$ or $-\infty$, which will be useful.

Lemma 1 (Exercise 9.10 (b)). $s_{n} \rightarrow-\infty$ if and only if $-s_{n} \rightarrow+\infty$.
Proof. Suppose $s_{n} \rightarrow-\infty$. Let $M>0$. Then $-M<0$. So there is $N \in \mathbb{N}$ such that for $n>N$, $s_{n}<-M$, which implies that $-s_{n}>M$. So we get $s_{n} \rightarrow+\infty$. On the other hand, assume $s_{n} \rightarrow+\infty$. Let $M<0$. Then $-M>0$. So there is $N \in \mathbb{N}$ such that for $n>N, s_{n}>-M$, which implies that $-s_{n}<M$. So we get $-s_{n} \rightarrow-\infty$.

Theorem 1 (Theorem 9.9). If $\lim s_{n}=+\infty$ and $\lim t_{n}=+\infty$ or $\lim t_{n}=a \in(0, \infty)$, then $\lim \left(s_{n} t_{n}\right)=+\infty$.

Proof. If $t_{n} \rightarrow+\infty$, then there is $N_{t} \in \mathbb{N}$ such that for $n>N_{t}, t_{n}>1$. If $t_{n} \rightarrow a \in(0, \infty)$, then by taking $\varepsilon=\frac{a}{2}$, we see that there is $N_{t} \in \mathbb{N}$ such that for $n>N_{t},\left|t_{n}-t\right|<\frac{a}{2}$, which implies that $t_{n}>a-\frac{a}{2}=\frac{a}{2}>0$. In either case, there are $b \in(0, \infty)$ and $N_{t} \in \mathbb{N}$ such that $t_{n}>b$ for $n>N_{t}$. Let $M>0$. Since $s_{n} \rightarrow+\infty$, there is $N_{s} \in \mathbb{N}$ such that for $n>N_{s}$, $s_{n}>M / b$. Let $N=\max \left\{N_{t}, N_{s}\right\}$. If $n>N$, then $t_{n}>b$ and $s_{n}>M / b$, and so $s_{n} t_{n}>M$. Thus, $s_{n} t_{n} \rightarrow+\infty$.

Corollary 1. If $\lim s_{n}=-\infty$ and $\lim t_{n}=+\infty$ or $\lim t_{n}=a \in(0,+\infty)$, then $\lim \left(s_{n} t_{n}\right)=$ $-\infty$. If $\lim s_{n}=+\infty$ and $\lim t_{n}=-\infty$ or $\lim t_{n}=a \in(-\infty, 0)$, then $\lim \left(s_{n} t_{n}\right)=-\infty$. If $\lim s_{n}=-\infty$ and $\lim t_{n} \in-\infty$ or $\lim t_{n}=a \in(-\infty, 0)$, then $\lim \left(s_{n} t_{n}\right)=+\infty$.

Proof. This follows from Lemma 1 and Theorem 9.9.
Theorem 2 (Exercise 9.11). (i) If $s_{n} \rightarrow+\infty$ and $\left(t_{n}\right)$ is bounded below, then $s_{n}+t_{n} \rightarrow+\infty$. (ii) If $s_{n} \rightarrow-\infty$ and $\left(t_{n}\right)$ is bounded above, then $s_{n}+t_{n} \rightarrow-\infty$. (iii) If $s_{n} \rightarrow+\infty$ and $\left(t_{n}\right)$ converges or diverges to $+\infty$, then $s_{n}+t_{n} \rightarrow+\infty$. (iv) If $s_{n} \rightarrow-\infty$ and $\left(t_{n}\right)$ converges or diverges to $-\infty$, then $s_{n}+t_{n} \rightarrow-\infty$.

Proof. (i) There is $L \in \mathbb{R}$ such that $t_{n}>L$ for all $n$. Let $M>0$. There is $M_{s}>0$ such that $M_{s}>M-L$. Since $s_{n} \rightarrow+\infty$, there is $N \in \mathbb{N}$ such that $n>N$ implies that $s_{n}>M_{s}$, which in turn implies that $s_{n}+t_{n}>M_{s}+L>M$. (ii) is similar to (i). (iii) follows from (i) because when $\left(t_{n}\right)$ converges or diverges to $+\infty$, it is bounded below. (iv) follows from (ii) in a similar way.

Theorem 3 (Theorem 9.10). (i) For a positive sequence $\left(s_{n}\right), s_{n} \rightarrow+\infty$ if and only if $\frac{1}{s_{n}} \rightarrow 0$. (ii) For a negative sequence $\left(s_{n}\right), s_{n} \rightarrow-\infty$ if and only if $\frac{1}{s_{n}} \rightarrow 0$.

Proof. (i) First suppose $s_{n} \rightarrow+\infty$. Let $\varepsilon>0$. Then $\frac{1}{\varepsilon}>0$. So there is $N \in \mathbb{N}$ such that for $n>N, s_{n}>\frac{1}{\varepsilon}$, which implies that $\left|\frac{1}{s_{n}}-0\right|=\frac{1}{s_{n}}<\varepsilon$. So we get $\frac{1}{s_{n}} \rightarrow 0$. Second, suppose $\frac{1}{s_{n}} \rightarrow 0$. Let $M>0$. Then $\frac{1}{M}>0$. So there is $N \in \mathbb{N}$ such that for $n>N, \frac{1}{s_{n}}=\left|\frac{1}{s_{n}}-0\right|<\frac{1}{M}$, which implies that $s_{n}>M$. So we get $s_{n} \rightarrow+\infty$. (ii) follows from (i) and Lemma 1

Remark 1. If we do not assume that $\left(s_{n}\right)$ is a positive sequence, we can still conclude that $1 / s_{n} \rightarrow 0$ from $s_{n} \rightarrow+\infty$. This is because we have $s_{n}>0$ for $n$ big enough. Here $1 / s_{n}$ may not be defined for finitely many $n$, but that does not affect the limit. Similarly, $s_{n} \rightarrow-\infty$ also implies that $1 / s_{n} \rightarrow 0$. But $1 / s_{n} \rightarrow 0$ does not imply $s_{n} \rightarrow+\infty$ or $s_{n} \rightarrow-\infty$. The sequence $\left(s_{n}\right)$ may have alternative signs. Consider the example $s_{n}=(-1)^{n} n$.

Theorem 4. If $s_{n} \rightarrow+\infty$, then for any $r \in \mathbb{Q}$ with $r>0, s_{n}^{r} \rightarrow+\infty$.
Proof. Let $M>0$. Then $M^{1 / r}>0$. Since $s_{n} \rightarrow+\infty$, there is $N \in \mathbb{N}$ such that for $n>N$, $s_{n}>M^{1 / r}$, which implies that $s_{n}^{r}>M$.

Remark 2. We may understand the above propositions formally as

$$
\begin{aligned}
& ( \pm \infty) \times( \pm \infty)=+\infty, \quad( \pm \infty) \times(\mp \infty)=-\infty \\
& a(>0) \times( \pm \infty)= \pm \infty, \quad a(<0) \times( \pm \infty)=\mp \infty \\
& ( \pm \infty)+( \pm \infty)=( \pm \infty), \quad a+( \pm \infty)= \pm \infty \\
& \frac{1}{ \pm \infty}=0^{ \pm}, \quad \frac{1}{0^{ \pm}}= \pm \infty, \quad(+\infty)^{r}=+\infty, \quad r>0 .
\end{aligned}
$$

There are no results about $0 \cdot( \pm \infty)$ or $(+\infty)+(-\infty)$.
Example 1. We have $\lim n^{2}=+\infty, \lim (-n)=-\infty, \lim 2^{n}=+\infty$, and $\lim (\sqrt{n}+7)=+\infty$. To see this, recall that $\lim n=+\infty$. Using the product theorem $(+\infty) \times(+\infty)=+\infty$, we get $\lim n^{2}=+\infty$. Using the theorem $(-1) \times(+\infty)=-\infty$, we get $\lim (-n)=-\infty$. Using the theorems $(+\infty)^{1 / 2}=+\infty$ and $(+\infty)+a=+\infty$, we get $\lim (\sqrt{n}+7)=+\infty$. Finally, since $2^{n}>0$ and $\frac{1}{2^{n}}=\left(\frac{1}{2}\right)^{n} \rightarrow 0$ (because $0<\frac{1}{2}<1$ ), using the theorem $\frac{1}{0^{+}}=+\infty$, we get $\lim 2^{n}=+\infty$.

Example 2. Show $\frac{n^{2}+3}{n+1}=+\infty$.
Solution. Since $\frac{n^{2}+3}{n+1}>0$ for all $n$, it suffices to show that $\frac{n+1}{n^{2}+3} \rightarrow 0$. This is the case because

$$
\frac{n+1}{n^{2}+3}=\frac{1 / n+1 / n^{2}}{1+3 / n^{2}} \rightarrow \frac{0+0^{2}}{1+3 * 0^{2}}=0 .
$$

## Monotone Sequences

Definition 1. A sequence $\left(s_{n}\right)$ is called an increasing sequence if $s_{n} \leq s_{n+1}$ for all $n$, and is called a decreasing sequence if $s_{n} \geq s_{n+1}$ for all $n$. If $\left(s_{n}\right)$ is increasing, then for any $n \leq m$, $s_{n} \leq s_{m}$. If $\left(s_{n}\right)$ is decreasing, then for any $n \leq m, s_{n} \geq s_{m}$. An increasing or decreasing sequence is called a monotone sequence.

Remark 3. An increasing sequence is bounded below: the first element is a lower bound. A decreasing sequence is bounded above: the first element is an upper bound.

Example 3. The sequence $(n)$ is increasing. The sequences $(-n)$ and $\left(\frac{1}{n}\right)$ are decreasing. The sequence $\left((-1)^{n}\right)$ is neither increasing or decreasing.

Theorem 5 (Theorems 10.2, 10.4, 10.5). (i) If $\left(s_{n}\right)$ is increasing, then $\lim s_{n}$ exists and equals $\sup \left\{s_{n}: n \in \mathbb{N}\right\}$. If $\left(s_{n}\right)$ is bounded above, then $\left(s_{n}\right)$ converges.
(ii) If $\left(s_{n}\right)$ is decreasing, then $\lim s_{n}$ exists and equals $\inf \left\{s_{n}: n \in \mathbb{N}\right\}$. If $\left(s_{n}\right)$ is bounded below, then $\left(s_{n}\right)$ converges.

Proof. (i) Let $S=\left\{s_{n}: n \in \mathbb{N}\right\}$ and $s=\sup S$. Consider two cases. Case 1. $S$ is bounded above. In this case $s \in \mathbb{R}$ is the smallest upper bound of $S$. Let $\varepsilon>0$. Since $s$ is the smallest upper bound of $S, s-\varepsilon$ is not an upper bound of $S$. Thus, $S$ contains an element greater than $s-\varepsilon$. This means, for some $N \in \mathbb{N}$, we have $s_{N}>s-\varepsilon$. Since $\left(s_{n}\right)$ is increasing, for any $n>N$, $s_{n} \geq s_{N}>s-\varepsilon$. On the other hand, $s_{n} \leq s$ for all $n \in \mathbb{N}$ since $s$ is an upper bound of $S$. So for any $n>N, s-\varepsilon<s_{n} \leq s$, which implies that $\left|s_{n}-s\right|<\varepsilon$. Thus, ( $s_{n}$ ) converges to $s$. Case 2. $S$ is not bounded above. Then $s=+\infty$. Let $M>0$. Since $S$ is not bounded above, $M$ is not an upper bound of $S$. So $S$ contains an element greater than $M$, i.e., for some $N \in \mathbb{N}$, we have $s_{N}>M$. Since $\left(s_{n}\right)$ is increasing, for any $n>N, s_{n} \geq s_{N}>M$. Thus, $s_{n} \rightarrow+\infty=s$.
(ii) This is similar to (i). We leave it as a homework problem.

