Quiz 2 Solutions

1 (a) (2 points) State the Comparison Test for Series.
(b) (3 points) Does the series $\sum_{n=1}^{\infty} \frac{\sin \left(n^{3}\right)}{n^{2}}$ converge? Why?

Solution. (a) For two series $\sum a_{n}$ and $\sum b_{n}$, if $\left|a_{n}\right| \leq b_{n}$ for each n, and $\sum b_{n}$ converges, then $\sum a_{n}$ also converges; if $a_{n} \geq b_{n} \geq 0$ for each n, and $\sum b_{n}$ diverges, then $\sum a_{n}$ also diverges.
(b) Since $\left|\sin \left(n^{3}\right)\right| \leq 1$, we have $\left|\frac{\sin \left(n^{3}\right)}{n^{2}}\right| \leq \frac{1}{n^{2}}$. We know that $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$. Taking $p=2$, we see that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges. Since $\left|\frac{\sin \left(n^{3}\right)}{n^{2}}\right| \leq \frac{1}{n^{2}}$ for each n, by comparison test, $\sum_{n=1}^{\infty} \frac{\sin \left(n^{3}\right)}{n^{2}}$ also converges.

2 (a) (2 points) State the Intermediate Value Theorem. Make sure to include all the hypotheses.
(b) (3 points) Prove there is some $x \in(0, \pi / 2)$ for which $\pi \sin x+x=\pi$, justifying each step of your answer carefully.

Solution. (a) If f is continuous on $[a, b]$, and $y \in \mathbb{R}$ satisfies either $f(a)>y>f(b)$ or $f(a)<y<f(b)$, then there is $x \in(a, b)$ such that $f(x)=y$.
(b) Let $f(x)=\pi \sin x+x$. Since $\sin x$ and x are continuous on \mathbb{R}, f is continuous on \mathbb{R}, and so is continuous on $[0, \pi]$. We calculate $f(0)=0<\pi$ and $f(\pi / 2)=\pi+\pi / 2>$ π. By Intermediate Value Theorem, there is $x \in(0, \pi / 2)$ such that $f(x)=\pi$, i.e., $\pi \sin x+x=\pi$.

