1. (10 points) Let $x_{1}, \ldots, x_{n} \in \mathbb{R}$. Prove that

$$
\left|x_{1}+\cdots+x_{n}\right| \leq\left|x_{1}\right|+\cdots+\left|x_{n}\right|
$$

Note: This problem may sound trivial, and it has already been used in other problems. Please provide a detailed proof.

Proof. We use the triangle inequality:

$$
|x+y| \leq|x|+|y|, \quad \forall x, y \in \mathbb{R}
$$

We prove the statement by induction. The induction bases is $\left|x_{1}\right| \leq\left|x_{1}\right|$, which is trivial. Suppose the inequality holds for n, i.e.,

$$
\left|x_{1}+\cdots+x_{n}\right| \leq\left|x_{1}\right|+\cdots+\left|x_{n}\right|
$$

Now we prove it for $n+1$. Since $x_{1}+\cdots+x_{n}+x_{1}=\left(x_{1}+\cdots+x_{n}\right)+x_{n+1}$, by triangle inequality and induction hypothesis,

$$
\left|x_{1}+\cdots+x_{n}+x_{1}\right| \leq\left|x_{1}+\cdots+x_{n}\right|+\left|x_{n+1}\right| \leq\left|x_{1}\right|+\cdots+\left|x_{n}\right|+\left|x_{n+1}\right| .
$$

So the inequality also holds for $n+1$. By math induction, the inequality should hold for all $n \in \mathbb{N}$.
2. (a) (4 points) Define a convergent sequence of real numbers.
(b) (6 points) Let $\left(s_{n}\right)$ be a convergent sequence of real numbers, and $s=\lim s_{n}$. Suppose $s<0$. Prove that there is $N \in \mathbb{N}$ such that $s_{n}<0$ for all $n>N$.

Proof. (a) A sequence $\left(s_{n}\right)$ of real numbers is convergent if there is $s \in \mathbb{R}$ (called $\lim s_{n}$) such that for any $\varepsilon>0$, there is $N \in \mathbb{N}$ such that for any $n>N,\left|s_{n}-s\right|<\varepsilon$.
(b) Let $\varepsilon=-s$. Since $s<0, \varepsilon>0$. By definition, there is $N \in \mathbb{N}$ such that for any $n>N,\left|s_{n}-s\right|<\varepsilon$, which implies that $s_{n}<s+\varepsilon=0$.
3. (10 points) Compute the limit

$$
\lim _{n \rightarrow \infty} \frac{3 n^{2}-5 n+2}{2 n^{2}-\cos \left(n^{3}\right)}
$$

Justify all steps.

Solution. Letting the numerator and the denominator both be divided by n^{2}, we get

$$
\frac{3 n^{2}-5 n+2}{2 n^{2}-\cos \left(n^{3}\right)}=\frac{3-5 / n+2 / n^{2}}{2-\cos \left(n^{3}\right) / n^{2}}
$$

We learned in class that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$. By limit theorems, we get

$$
\lim _{n \rightarrow \infty}-\frac{5}{n}=-5 * 0=0, \quad \lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0 * 0=0, \quad \lim _{n \rightarrow \infty} \frac{2}{n^{2}}=2 * 0=0
$$

So the numerator $3-5 / n+2 / n^{2}$ converges to $3+0+0=3$. Since $\left|\cos \left(n^{3}\right)\right| \leq 1$, we have

$$
-\frac{1}{n^{2}} \leq \frac{\cos \left(n^{3}\right)}{n^{2}} \leq \frac{1}{n^{2}}
$$

Since $\frac{1}{n^{2}} \rightarrow 0$, we also have $-\frac{1}{n^{2}} \rightarrow 0$. By squeeze lemma, we get $\frac{\cos \left(n^{3}\right)}{n^{2}} \rightarrow 0$. Thus the denominator $2-\cos \left(n^{3}\right) / n^{2}$ converges to $2-0=2$. So the fractal $\frac{3-5 / n+2 / n^{2}}{2-\cos \left(n^{3}\right) / n^{2}}$ converges to $\frac{3}{2}$.
4. Let $\left(s_{n}\right)$ and $\left(t_{n}\right)$ be two sequences such that $s_{n} \leq t_{n}$ for each $n \in \mathbb{N}$.
(a) (6 points) Prove that for any $N \in \mathbb{N}$, $\inf \left\{s_{n}: n>N\right\} \leq \inf \left\{t_{n}: n>N\right\}$.
(b) (4 points) Prove that $\lim \inf s_{n} \leq \liminf t_{n}$.

Proof. (a) Let $N \in \mathbb{N}$. For every $n \in \mathbb{N}$ such that $n>N$, we have $t_{n} \geq s_{n} \geq \inf \left\{s_{n}\right.$: $n>N\}$. Since $t_{n} \geq \inf \left\{s_{n}: n>N\right\}$ for every $n>N$, we get $\inf \left\{t_{n}: n>N\right\} \geq$ $\inf \left\{s_{n}: n>N\right\}$.
(b) Let $u_{N}=\inf \left\{s_{n}: n>N\right\}$ and $v_{N}=\inf \left\{t_{n}: n>N\right\}, N \in \mathbb{N}$. Recall the definition of $\lim \inf s_{n}$. If $\left(s_{n}\right)$ is bounded below, then $\left(u_{N}\right)_{N \in \mathbb{N}}$ is an increasing sequence of real numbers, and $\lim \inf s_{n}$ is defined as $\lim _{N \rightarrow \infty} u_{N}$, which could be a real number or $+\infty$; and if $\left(s_{n}\right)$ is not bounded below, then $u_{N}=-\infty$ for every N, and $\lim \inf s_{n}$ is defined as $-\infty$. Similarly, if $\left(t_{n}\right)$ is bounded below, then $\liminf t_{n}=\lim _{N \rightarrow \infty} v_{N}$.
We have proved in (a) that $u_{N} \leq v_{N}$ for every $N \in \mathbb{N}$. We have learned a theorem in class that for two sequences real numbers $\left(a_{n}\right)$ and $\left(b_{n}\right)$, if $a_{n} \leq b_{n}$ for every n, and if $\lim a_{n}$ and $\lim b_{n}$ both exist (could be a real number or $\pm \infty$), then $\lim a_{n} \leq \lim b_{n}$. If $\left(s_{n}\right)$ and $\left(t_{n}\right)$ are both bounded below, then $\left(u_{N}\right)$ and $\left(v_{N}\right)$ are two sequences of real numbers, and $u_{N} \leq v_{N}$ for every $N \in \mathbb{N}$. Applying the above theorem to $\left(u_{N}\right)$ and $\left(v_{N}\right)$, we get $\liminf s_{n}=\lim u_{N} \leq \lim v_{N}=\liminf t_{n}$.
We have assumed that $\left(s_{n}\right)$ and $\left(t_{n}\right)$ are both bounded below. We now deal the other cases. In fact, if $\left(s_{n}\right)$ is not bounded below, then $\lim \inf s_{n}=-\infty$. So $\lim \inf s_{n} \leq$ $\lim \inf t_{n}$ always holds regardless of whether $\left(t_{n}\right)$ is bounded below. If $\left(s_{n}\right)$ is bounded below, then there is a lower bound $L \in \mathbb{R}$ of $\left(s_{n}\right)$. Since $t_{n} \geq s_{n}$ for every n, L is also a lower bound of $\left(t_{n}\right)$, and so $\left(t_{n}\right)$ is also bounded. Now we have studied all cases, and the proof is done.
5. Let $S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$. Let $\left(s_{n}\right)$ be a sequence of numbers chosen from S such that every element of S appears infinitely many times in $\left(s_{n}\right)$. Specifically,

$$
\begin{aligned}
& s_{1}=1, \\
& s_{2}=1, \quad s_{3}=\frac{1}{2}, \\
& s_{4}=1, \quad s_{5}=\frac{1}{2}, \quad s_{6}=\frac{1}{3}, \\
& s_{7}=1, \quad s_{8}=\frac{1}{2}, \quad s_{9}=\frac{1}{3}, \quad s_{10}=\frac{1}{4}, \\
& s_{11}=1, \quad s_{12}=\frac{1}{2}, \quad s_{13}=\frac{1}{3}, \quad s_{14}=\frac{1}{4}, \quad s_{15}=\frac{1}{5}, \\
& s_{16}=1, \quad s_{17}=\frac{1}{2}, \quad s_{18}=\frac{1}{3}, \quad s_{19}=\frac{1}{4}, \quad s_{20}=\frac{1}{5}, \quad s_{21}=\frac{1}{6}, \\
& \text {...... }
\end{aligned}
$$

(a) (4 points) What is the set S of subsequential limits of $\left(s_{n}\right)$? You only need to provide the answer. No justification is needed.
(b) (6 points) What are $\lim \sup s_{n}$ and $\lim \inf s_{n}$? Justify your answer. You may use the result of (a), or argue directly.

Solution. (a) The set of subsequential limits is $S \cup\{0\}$. In fact, it is easy to see that every point $s \in S$ is a subsequential limit: we may take a subsequence of $\left(s_{n}\right)$ taking constant value s. It is also clear that 0 is a subsequential limit since $\left(\frac{1}{k}: k \in \mathbb{N}\right)$ is a subsequence of $\left(s_{n}\right)$. It takes some work to show that $\left(s_{n}\right)$ has no other subsequential limits. If you want to prove this, then first observe that $\left(s_{n}\right)$ is bounded, which implies that $+\infty$ and $-\infty$ are not subsequential limits. Then you can show that any $x \in$ $\mathbb{R} \backslash(S \cup\{0\})$ is not a subsequential limit by proving that there is some $\varepsilon>0$ such that $(x-\varepsilon, x+\varepsilon)$ contains no elements of $\left(s_{n}\right)$. You consider three cases separately: $x<0$, $0<x<1$, and $x>1$.
(b) By the result of (a) and a theorem in the book, $\lim \sup s_{n}$ is the biggest subsequential limit of $\left(s_{n}\right)$, i.e., $\max (S \cup\{0\})=1$; and $\liminf s_{n}$ is the smallest subsequential limit of $\left(s_{n}\right)$, i.e., $\min (S \cup\{0\})=0$. You may also argue directly. Since $\left(s_{n}\right)$ is a sequence in S and every element of S appears infinitely many times in $\left(s_{n}\right)$, for any $N \in \mathbb{N}$, the set $\left\{s_{n}: n>N\right\}$ is just S. Thus, $\inf \left\{s_{n}: n>N\right\}=\inf S=0$ and $\sup \left\{s_{n}: n>N\right\}=\sup S=1$. So

$$
\liminf s_{n}=\lim _{N \rightarrow \infty} \inf \left\{s_{n}: n>N\right\}=0, \quad \lim \sup s_{n}=\lim _{N \rightarrow \infty} \sup \left\{s_{n}: n>N\right\}=1
$$

