
MTH 320 Section 004 Midterm 1 Solutions

1. (10 points) Let x1, . . . , xn ∈ R. Prove that

|x1 + · · ·+ xn| ≤ |x1|+ · · ·+ |xn|.

Note: This problem may sound trivial, and it has already been used in other problems.
Please provide a detailed proof.

Proof. We use the triangle inequality:

|x + y| ≤ |x|+ |y|, ∀x, y ∈ R.

We prove the statement by induction. The induction bases is |x1| ≤ |x1|, which is
trivial. Suppose the inequality holds for n, i.e.,

|x1 + · · ·+ xn| ≤ |x1|+ · · ·+ |xn|.

Now we prove it for n+ 1. Since x1 + · · ·+xn +x1 = (x1 + · · ·+xn) +xn+1, by triangle
inequality and induction hypothesis,

|x1 + · · ·+ xn + x1| ≤ |x1 + · · ·+ xn|+ |xn+1| ≤ |x1|+ · · ·+ |xn|+ |xn+1|.

So the inequality also holds for n + 1. By math induction, the inequality should hold
for all n ∈ N.

2. (a) (4 points) Define a convergent sequence of real numbers.

(b) (6 points) Let (sn) be a convergent sequence of real numbers, and s = lim sn.
Suppose s < 0. Prove that there is N ∈ N such that sn < 0 for all n > N .

Proof. (a) A sequence (sn) of real numbers is convergent if there is s ∈ R (called lim sn)
such that for any ε > 0, there is N ∈ N such that for any n > N , |sn − s| < ε.

(b) Let ε = −s. Since s < 0, ε > 0. By definition, there is N ∈ N such that for any
n > N , |sn − s| < ε, which implies that sn < s + ε = 0.

3. (10 points) Compute the limit

lim
n→∞

3n2 − 5n + 2

2n2 − cos(n3)
.

Justify all steps.



Solution. Letting the numerator and the denominator both be divided by n2, we get

3n2 − 5n + 2

2n2 − cos(n3)
=

3− 5/n + 2/n2

2− cos(n3)/n2
.

We learned in class that limn→∞
1
n

= 0. By limit theorems, we get

lim
n→∞

− 5

n
= −5 ∗ 0 = 0, lim

n→∞

1

n2
= 0 ∗ 0 = 0, lim

n→∞

2

n2
= 2 ∗ 0 = 0.

So the numerator 3− 5/n + 2/n2 converges to 3 + 0 + 0 = 3. Since | cos(n3)| ≤ 1, we
have

− 1

n2
≤ cos(n3)

n2
≤ 1

n2
.

Since 1
n2 → 0, we also have − 1

n2 → 0. By squeeze lemma, we get cos(n3)
n2 → 0. Thus the

denominator 2−cos(n3)/n2 converges to 2−0 = 2. So the fractal 3−5/n+2/n2

2−cos(n3)/n2 converges

to 3
2
.

4. Let (sn) and (tn) be two sequences such that sn ≤ tn for each n ∈ N.

(a) (6 points) Prove that for any N ∈ N, inf{sn : n > N} ≤ inf{tn : n > N}.
(b) (4 points) Prove that lim inf sn ≤ lim inf tn.

Proof. (a) Let N ∈ N. For every n ∈ N such that n > N , we have tn ≥ sn ≥ inf{sn :
n > N}. Since tn ≥ inf{sn : n > N} for every n > N , we get inf{tn : n > N} ≥
inf{sn : n > N}.
(b) Let uN = inf{sn : n > N} and vN = inf{tn : n > N}, N ∈ N. Recall the definition
of lim inf sn. If (sn) is bounded below, then (uN)N∈N is an increasing sequence of real
numbers, and lim inf sn is defined as limN→∞ uN , which could be a real number or +∞;
and if (sn) is not bounded below, then uN = −∞ for every N , and lim inf sn is defined
as −∞. Similarly, if (tn) is bounded below, then lim inf tn = limN→∞ vN .

We have proved in (a) that uN ≤ vN for every N ∈ N. We have learned a theorem in
class that for two sequences real numbers (an) and (bn), if an ≤ bn for every n, and if
lim an and lim bn both exist (could be a real number or ±∞), then lim an ≤ lim bn. If
(sn) and (tn) are both bounded below, then (uN) and (vN) are two sequences of real
numbers, and uN ≤ vN for every N ∈ N. Applying the above theorem to (uN) and
(vN), we get lim inf sn = limuN ≤ lim vN = lim inf tn.

We have assumed that (sn) and (tn) are both bounded below. We now deal the other
cases. In fact, if (sn) is not bounded below, then lim inf sn = −∞. So lim inf sn ≤
lim inf tn always holds regardless of whether (tn) is bounded below. If (sn) is bounded
below, then there is a lower bound L ∈ R of (sn). Since tn ≥ sn for every n, L is also
a lower bound of (tn), and so (tn) is also bounded. Now we have studied all cases, and
the proof is done.



5. Let S = { 1
n

: n ∈ N}. Let (sn) be a sequence of numbers chosen from S such that
every element of S appears infinitely many times in (sn). Specifically,

s1 = 1,

s2 = 1, s3 = 1
2
,

s4 = 1, s5 = 1
2
, s6 = 1

3
,

s7 = 1, s8 = 1
2
, s9 = 1

3
, s10 = 1

4
,

s11 = 1, s12 = 1
2
, s13 = 1

3
, s14 = 1

4
, s15 = 1

5
,

s16 = 1, s17 = 1
2
, s18 = 1

3
, s19 = 1

4
, s20 = 1

5
, s21 = 1

6
,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(a) (4 points) What is the set S of subsequential limits of (sn)? You only need to
provide the answer. No justification is needed.

(b) (6 points) What are lim sup sn and lim inf sn? Justify your answer. You may use
the result of (a), or argue directly.

Solution. (a) The set of subsequential limits is S ∪ {0}. In fact, it is easy to see that
every point s ∈ S is a subsequential limit: we may take a subsequence of (sn) taking
constant value s. It is also clear that 0 is a subsequential limit since ( 1

k
: k ∈ N) is a

subsequence of (sn). It takes some work to show that (sn) has no other subsequential
limits. If you want to prove this, then first observe that (sn) is bounded, which implies
that +∞ and −∞ are not subsequential limits. Then you can show that any x ∈
R\ (S ∪{0}) is not a subsequential limit by proving that there is some ε > 0 such that
(x− ε, x+ ε) contains no elements of (sn). You consider three cases separately: x < 0,
0 < x < 1, and x > 1.

(b) By the result of (a) and a theorem in the book, lim sup sn is the biggest subsequen-
tial limit of (sn), i.e., max(S ∪ {0}) = 1; and lim inf sn is the smallest subsequential
limit of (sn), i.e., min(S ∪ {0}) = 0. You may also argue directly. Since (sn) is a
sequence in S and every element of S appears infinitely many times in (sn), for any
N ∈ N, the set {sn : n > N} is just S. Thus, inf{sn : n > N} = inf S = 0 and
sup{sn : n > N} = supS = 1. So

lim inf sn = lim
N→∞

inf{sn : n > N} = 0, lim sup sn = lim
N→∞

sup{sn : n > N} = 1.


