Standard Response Questions. Show all work to receive credit. Please BOX your final answer.

1. (7 points) The region in the first quadrant bounded by the $y=x^{3}, y=\sqrt{x}$, is rotated about the y-axis. Compute the volume of the resulting solid of revolution.

Solution: Convert first to $x=\sqrt[3]{y}$ and $x=y^{2}$ then we can see that these curves intersect at $(0,0)$ and $(1,1)$ so the volume is given by

$$
\begin{aligned}
V & =\pi \int_{0}^{1}(\sqrt[3]{y})^{2}-\left(y^{2}\right)^{2} d y \\
& =\pi \int_{0}^{1} y^{2 / 3}-y^{4} d y \\
& =\pi\left[\frac{3}{5} y^{5 / 3}-\frac{1}{5} y^{5}\right]=\pi \frac{35}{5}-\pi \frac{1}{5}=\frac{2 \pi}{5}
\end{aligned}
$$

2. (7 points) Find the function $y=y(x)$ which solves the initial value problem

$$
\frac{d y}{d x}=\frac{y}{2+x^{2}} \text { and } y(0)=1
$$

Solution: First we can rearrange to get

$$
\begin{array}{rlr}
\frac{d y}{y} & =\frac{d x}{2+x^{2}} & \text { (now integrate) } \\
\int \frac{d y}{y} & =\int \frac{d x}{2+x^{2}} & \text { (find anti-derivatives) } \\
\ln |y| & =\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x}{\sqrt{2}}\right)+C & \text { (plug in } x=0 \text { and } y=1 \text {) } \\
0 & =0+C & \text { (plug } C=0 \text { back into our equation) } \\
\ln |y| & =\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x}{\sqrt{2}}\right) & \text { (solve for } y \text {) } \\
y & =e^{\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x}{\sqrt{2}}\right)} &
\end{array}
$$

3. (7 points) A swimming pool built in the shape of a rectangular prism 3 m deep, 5 m wide and 10 m long is filled 1 m below the top. How much work is required to pump all the water into a drain at the top edge of the pool ? (water weighs $9800 \mathrm{~N} / \mathrm{m}^{3}$).

Solution: Use $\sigma=9800, A(y)=5(10)=50$ and $d(y)=3-y$ to give us

$$
\begin{aligned}
W & =\int_{0}^{2} 9800 \cdot 50 \cdot(3-y) d y \\
& =490000\left[3 y-y^{2} / 2\right]_{0}^{2} \\
& =490000[6-2] \\
& =490000 \cdot 4=1960000 \mathrm{~N} \mathrm{~m}
\end{aligned}
$$

4. (7 points) Two positively charged particles repel each other with a force of $F(x)=\frac{1}{x^{2}}$ where x is the distance between the two. One particle is held fixed while the other is pushed from a point 1 m away from the first particle to a point 0.1 m away from the first particle. How much work is done ?

Solution:

$$
\begin{aligned}
W & =\int_{1}^{1 / 10} \frac{1}{x^{2}} d x \\
& =\left[-\frac{1}{x}\right]_{1}^{1 / 10} \\
& =[-10+1]=-9 \text { units of Work } \quad \text { (negative since done in the direction opposite the force) }
\end{aligned}
$$

5. (7 points) Find the derivative of $f(x)=(x+1)^{\ln (\mathrm{x})}$.

Solution: Consider $y=(x+1)^{\ln (\mathrm{x})}$ then

$$
\begin{aligned}
\ln y & =\ln (x+1)^{\ln (\mathrm{x})} \\
\ln y & =\ln x \cdot \ln (x+1) \\
\frac{1}{y} \cdot y^{\prime} & =\frac{1}{x} \cdot \ln (x+1)+\ln x \cdot \frac{1}{x+1} \\
y^{\prime} & =(x+1)^{\ln (\mathrm{x})}\left(\frac{1}{x} \cdot \ln (x+1)+\ln x \cdot \frac{1}{x+1}\right)
\end{aligned}
$$

6. (7 points) Evaluate $\int \frac{3 x^{2}+2}{x^{3}+2 x-5} d x$.

Solution: Let $u=x^{3}+2 x-5$ then $d u=3 x^{2}+2 x d x$ then

$$
\begin{aligned}
\int \frac{3 x^{2}+2}{x^{3}+2 x-5} d x & =\int \frac{1}{u} d u \\
& =\ln |u|+C \\
& =\ln \left|x^{3}+2 x-5\right|+C
\end{aligned}
$$

7. (8 points) After an accident at a nuclear facility a sample of sea water was tested for radioactive contamination, and it showed an elevated level of $27 \mathrm{~Bq} / \mathrm{m}^{3}$ (Becquerel per cubic meter, a measure of radiation) primarily due to Cesium- 137 which has a half life of 30 years. How many years does it take for the radiation to return to its natural level of $1 B q / \mathrm{m}^{3}$? (Use the approximate values $10 / 3$ and $7 / 10$ for $\ln 27$ and $\ln 2$ respectively)

Solution: We can start with the equation $A(t)=27 e^{k t}$ then since the half life is 30 years we get

$$
\begin{aligned}
\frac{27}{2} & =27 e^{k \cdot 30} \\
\frac{1}{2} & =e^{k \cdot 30} \\
\ln \frac{1}{2} & =k \cdot 30 \\
\ln \frac{1}{2} & =k \cdot 30 \longrightarrow \frac{\ln \frac{1}{2}}{30}=k
\end{aligned}
$$

From here we can solve

$$
\begin{aligned}
1 & =27 e^{\frac{\ln \frac{1}{2}}{30} \cdot t} \\
\frac{1}{27} & =e^{\frac{\ln \frac{1}{2}}{30} \cdot t} \\
\ln \frac{1}{27} & =\frac{\ln \frac{1}{2}}{30} \cdot t \\
\frac{30 \ln \frac{1}{27}}{\ln \frac{1}{2}} & =t
\end{aligned}
$$

using the approximate values specified we get

$$
t=\frac{30 \ln \frac{1}{27}}{\ln \frac{1}{2}}=\frac{30 \ln 27}{\ln 2}=30 \cdot \frac{10 / 3}{7 / 10}=\frac{1000}{7} \text { years }
$$

8. (6 points) Evaluate $\lim _{x \rightarrow 0} \frac{\ln (\sec x)}{x^{2}}$. (If you use l'Hospital's Rule, explicitly state your reasoning.)

Solution: Since $\lim _{x \rightarrow 0} \frac{\ln (\sec x)}{x^{2}} \rightarrow \frac{0}{0}$ so l'Hopital's rule applies.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\ln (\sec x)}{x^{2}} & \stackrel{L H}{=} \lim _{x \rightarrow 0} \frac{\frac{1}{\sec x} \cdot \sec x \tan x}{2 x} \\
& =\lim _{x \rightarrow 0} \frac{\tan x}{2 x} \\
& \stackrel{L H}{=} \lim _{x \rightarrow 0} \frac{\sec ^{2} x}{2}=\frac{1}{2}
\end{aligned}
$$

$$
=\lim _{x \rightarrow 0} \frac{\tan x}{2 x} \quad \text { (which is also a } 0 / 0 \text { indeterminant) }
$$

Multiple Choice. Circle the best answer. No work needed. No partial credit available.
9. (4 points) What is the value of x if $\int_{1}^{x^{2}} \frac{d t}{t}=-1$?
A. e
B. $\frac{1}{e}$
C. $\frac{1}{\sqrt{e}}$
D. \sqrt{e}
E. 0
10. (4 points) What is the value of $\cos \left(\tan ^{-1}(3)\right)$?
A. $\frac{1}{\sqrt{10}}$
B. $\frac{3}{\sqrt{10}}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{10}{\sqrt{3}}$
E. $\frac{2}{\sqrt{10}}$
11. (4 points) What is the derivative of $y=\sin ^{-1}(\ln x)$?
A. $\frac{1}{x \sqrt{1-x^{2}}}$
B. $\frac{1}{x \sqrt{1-\ln ^{2} x}}$
C. $\frac{1}{\ln x \sqrt{1-x^{2}}}$
D. $\frac{1}{x\left(1+x \ln ^{2} x\right)}$
E. $\frac{1}{\ln x\left(1+x^{2}\right)}$
12. (4 points) Evaluate $\int_{0}^{\ln 2} \sinh 2 x d x$.
A. $\frac{17}{16}$
B. $\frac{1}{2}$
C. $\frac{15}{16}$
D. $\frac{9}{16}$
E. $\frac{1}{16}$
13. (4 points) Evaluate $\int \sin ^{4} x \cos ^{3} x d x$.
A. $\frac{1}{5} \sin ^{5} x+\frac{1}{7} \sin ^{7} x+C$
B. $\frac{1}{7} \sin ^{7} x-\frac{1}{5} \sin ^{5} x+C$
C. 0
D. $-\frac{1}{20} \cos ^{5} x \sin ^{4} x+C$
E. $\frac{1}{5} \sin ^{5} x-\frac{1}{7} \sin ^{7} x+C$
14. (4 points) Let $f(x)=x^{3}+2 \sqrt{x}+2$. What is $\left(f^{-1}\right)^{\prime}(5)$?
A. $7 / 2$
B. $75+\frac{1}{\sqrt{5}}$
C. $1 / 5$
D. $1 / 4$
E. $1 / 2$
15. (4 points) Determine the values for A and B, such that $y=\frac{1}{x(10+x)}=\frac{A}{x}+\frac{B}{10+x}$.
A. $A=\frac{1}{10}, B=10$
B. $A=10, B=\frac{1}{10}$
C. $A=1, B=1$
D. $A=\frac{1}{10}, B=\frac{1}{10}$
E. $A=\frac{1}{10}, B=-\frac{1}{10}$
16. (4 points) Which of the following integrals is improper?
A. $\int_{0}^{1} \frac{d t}{\ln (2+x)}$
B. $\int_{0}^{1} \frac{1}{x^{2}-4} d x$
C. $\int_{0}^{1} \frac{1}{t} d x$
D. $\int_{0}^{1} \frac{1}{x^{2}-1} d x$
E. $\int_{-1}^{1} \frac{1}{x^{2}-4} d x$
17. (4 points) Evaluate $\int_{0}^{\pi / 2} x \sin x d x$.
A. 1
B. $\frac{\pi}{2}$
C. -1
D. $-\frac{\pi}{2}$
E. 0

More Challenging Questions

18. (4 points) Multiple Choice Consider the following two unrelated statements:
19. If $f(t) \leq g(t)$ and $\int_{1}^{\infty} f(t) d t$ diverges, then $\int_{1}^{\infty} g(t) d t$ diverges.
20. $\left(\frac{\log _{3} x}{\log _{7} x}\right)^{\prime}=0$
A. both statements are true
B. 1. is true and 2. is false
C. 1. is false and 2. is true
D. both statements are false

Solution: 1. is false because it does not exclude negatives. A counterexample would be $f(x)=-x$ and $g(x)=0$.
2. is true since $\frac{\log _{3} x}{\log _{7} x}=\frac{\ln 7}{\ln 3}$
19. (10 points) Compute $\int \sqrt{x} \tan ^{-1} \sqrt{x} d x$.

Solution: Consider integration by parts with $u=\tan ^{-1} \sqrt{x}$ and $d v=\sqrt{x}$. Then $d u=\frac{1}{1+x} \cdot \frac{d x}{2 \sqrt{x}}$ and $v=\frac{2}{3} x^{3 / 2}$ giving us

$$
\begin{aligned}
\int \sqrt{x} \tan ^{-1} \sqrt{x} d x & =\frac{2}{3} x^{3 / 2} \cdot \tan ^{-1} \sqrt{x}-\int \frac{2}{3} x^{3 / 2} \cdot \frac{1}{1+x} \cdot \frac{d x}{2 \sqrt{x}} \\
& =\frac{2}{3} x^{3 / 2} \cdot \tan ^{-1} \sqrt{x}-\frac{1}{3} \int \frac{x}{1+x} d x \\
& =\frac{2}{3} x^{3 / 2} \cdot \tan ^{-1} \sqrt{x}-\frac{1}{3} \int 1-\frac{1}{1+x} d x \\
& =\frac{2}{3} x^{3 / 2} \cdot \tan ^{-1} \sqrt{x}-\frac{1}{3}[x-\ln |1+x|]+C
\end{aligned}
$$

