Standard Response Questions. Show all work to receive credit. Please BOX your final answer.

1. (7 points) Let R be the region in the first quadrant below the line $y=3$ and above the curve $y=e^{x}$, (shown in the picture). Find the volume of the solid formed by revolving R about the x-axis.

Solution: Intersection of $y=3$ and $y=e^{x}$ happens at $e^{x}=3 \Longrightarrow x=\ln 3$. So now we evaluate

$$
\pi \int_{0}^{\ln 3} 9-e^{2 x} d x=\pi\left[9 x-\frac{1}{2} e^{2 x}\right]_{0}^{\ln 3}=\pi\left[9 \ln 3-\frac{1}{2} \cdot 9+\frac{1}{2}\right]=\pi[9 \ln (3)-4]
$$

2. (7 points) An underground tank is a cone with radius 7 feet and height 15 feet. The tank is full of water (water weighs $62.5 \mathrm{lb} / \mathrm{ft}^{3}$). How much work is required to empty the tank by pumping the water to a height of 3 ft above ground level?
Write your answer as an integral, but do not evaluate the integral.

Solution: Measure y from the bottom. The radius and height of the cone are related through $r=\frac{7}{15} y$. Distance to pump is $18-y$ and volume of slice is $\pi\left(\frac{7}{15} y\right)^{2} d y$. So

$$
\text { Work }=\int_{0}^{15} \pi\left(\frac{7}{15} y\right)^{2} \cdot 62.5 \cdot(18-y) d y \quad \text { ft-lbs. }
$$

Remark: if labeling with y from ground level, then $r(y)=7-\frac{7}{15} y$, and distance pumped is $y+3$. So the resulting integral would be

$$
\int_{0}^{15} \pi\left(7-\frac{7}{15} y\right)^{2} \cdot 62.5 \cdot(3+y) d y
$$

3. (7 points) Differentiate the function $f(x)=(\ln x)^{\cosh (x)}$.

Solution: Log differentiation:

$$
\frac{1}{y} \cdot y^{\prime}=\frac{d}{d x}[\cosh (x) \cdot \ln (\ln (x))]=\left[\sinh (x) \ln (\ln (x))+\cosh (x) \frac{1}{\ln (x)} \frac{1}{x}\right]
$$

so

$$
y^{\prime}=(\ln x)^{\cosh (x)}\left[\sinh (x) \ln (\ln (x))+\cosh (x) \frac{1}{\ln (x)} \frac{1}{x}\right]
$$

Solution: Change of base:

$$
f(x)=e^{\ln (\ln (x)) \cosh (x)}
$$

so

$$
f^{\prime}(x)=e^{\ln (\ln (x)) \cosh (x)}[\cosh (x) \cdot \ln (\ln (x))]^{\prime}=e^{\ln (\ln (x)) \cosh (x)}\left[\sinh (x) \ln (\ln (x))+\cosh (x) \frac{1}{\ln (x)} \frac{1}{x}\right]
$$

4. (7 points) Use partial fractions to find $\int \frac{x+7}{x^{2}-x-2} d x$.

Solution: $x^{2}-x-2=(x-2)(x+1)$. So $\frac{x+7}{(x-2)(x+1)}=\frac{A}{x-2}+\frac{B}{x+1}$. Multiply through

$$
x+7=A(x+1)+B(x-2)
$$

Solve (cover up or linear system) $\Longrightarrow A=3, B=-2$.

$$
\int \frac{3}{x-2}-\frac{2}{x+1} d x=3 \ln (|x-2|)-2 \ln (|x+1|)+C .
$$

5. (6 points) Evaluate the definite integral $\int_{e}^{e^{2}} \frac{1}{x \sqrt{\ln x}} d x$.

Solution: u substitution: $u=\ln x, d u=\frac{1}{x} d x$. So

$$
\int \frac{1}{x \sqrt{\ln x}} d x=\int \frac{1}{\sqrt{u}} d u=2 \sqrt{u}+C=2 \sqrt{\ln x}+C
$$

so therefore

$$
\int_{e}^{e^{2}} \frac{1}{x \sqrt{\ln x}} d x=\left.2 \sqrt{\ln x}\right|_{e} ^{e^{e^{2}}}=2 \sqrt{\ln e^{2}}-2 \sqrt{\ln e}=2 \sqrt{2}-2
$$

6. (a) (2 points) Find the derivative of $y=x \ln (x)-x$.

Solution:

$$
y^{\prime}=\ln (x)+x \cdot \frac{1}{x}-1=\ln (x)
$$

(b) (6 points) Integrate $\int(\ln x)^{2} d x$.

Solution: Integrate by parts $\begin{array}{ll}u=(\ln x)^{2} & d u=2 \ln (x) \frac{1}{x} d x \\ v=x & d v=d x\end{array}$

$$
=x(\ln x)^{2}-\int 2 \ln (x) d x
$$

The second integral we can use part (a):

$$
=x(\ln x)^{2}-2(x \ln (x)-x)+C
$$

Remark: alternatively one can integrate by parts a second time.
7. (7 points) For the function $y=\sin ^{-1}(x)$, derive the formula $\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}$ using either implicit differentiation or the general formula for $\left(f^{-1}\right)^{\prime}$. Show all work and make your reasoning clear.

Solution: Implicit differentiation:

$$
\begin{aligned}
y & =\sin ^{-1}(x) \\
\sin (y) & =x \\
\cos (y) \cdot y^{\prime} & =1 \\
y^{\prime} & =\frac{1}{\cos (y)}=\frac{1}{\cos \left(\sin ^{-1}(x)\right)}=\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

(Students should show some work evaluating $\cos \left(\sin ^{-1}(x)\right)$ using either trig identity $\cos ^{2}(y)=1-\sin ^{2}(y)$ or triangle drawing.)
Solution: Inverse function formula:

$$
\left(\sin ^{-1}\right)^{\prime}(x)=\frac{1}{(\sin)^{\prime}(y)} \quad \text { when } x=\sin (y)
$$

So

$$
\left(\sin ^{-1}\right)^{\prime}(x)=\frac{1}{\cos (y)}=\frac{1}{\sqrt{1-x^{2}}}
$$

(Student should show some work evaluating $\cos \left(\sin ^{-1}(x)\right)$ using either trig identity $\cos ^{2}(y)=1-\sin ^{2}(y)$ or triangle drawing.)
8. (7 points) Integrate $\int \frac{1}{\left(9+x^{2}\right)^{3 / 2}} d x$.

Solution: Trig substitution: $x=3 \tan (\theta), d x=3 \sec ^{2}(\theta) d \theta$, and $\sqrt{9+x^{2}}=3 \sec (\theta)$.

$$
=\int \frac{1}{(3 \sec (\theta))^{3}} \cdot 3 \sec ^{2}(\theta) d \theta=\frac{1}{9} \int \frac{1}{\sec \theta} d \theta=\frac{1}{9} \int \cos \theta d \theta=\frac{1}{9} \sin \theta+C
$$

If $\tan \theta=x / 3$, then $\sin \theta=x / \sqrt{3^{2}+x^{2}}$ (draw a triangle, or use that $\sin \theta=\tan \theta / \sec \theta$). So

$$
\int \frac{1}{\left(9+x^{2}\right)^{3 / 2}} d x=\frac{1}{9} \frac{x}{\sqrt{9+x^{2}}}+C
$$

Multiple Choice. Circle the best answer. No work needed. No partial credit available.
9. (4 points) The derivative of $y=\cosh \left(x^{2}\right)+\sinh (2 x)$ is:
A. $2 x \sinh \left(x^{2}\right)+2 \cosh (2 x)$
B. $-2 x \sinh \left(x^{2}\right)+2 \cosh (2 x)$
C. $2 x \sinh (2 x)-2 \cosh \left(x^{2}\right)$
D. $2 x \sinh \left(x^{2}\right)-2 \cosh (2 x)$
E. $2 x \sinh (2 x)+2 \cosh \left(x^{2}\right)$
10. (4 points) The function $f(x)=\int_{1}^{e^{x}} \frac{1}{t} d t$ is equal to
A. $e^{x}-1$
B. $\frac{1}{e^{x}}-1$
C. $1-\frac{1}{e^{2 x}}$
D. x
E. $x-1$
11. (4 points) What is the solution $y(x)$ of the initial value problem $y^{\prime}=\frac{x^{2}+1}{2 y}$ with $y(0)=1$?
A. $y=e^{\frac{1}{6} x^{3}+\frac{1}{2} x}$
B. $y=\sqrt{\frac{1}{3} x^{3}+x+1}$
C. $y=\frac{1}{6} x^{3}+\frac{1}{2} x+1$
D. $y=1-\sqrt{x^{3}+x}$
E. $y=\frac{1}{2} x^{2}+1$
12. (4 points) Evaluate $\int_{0}^{\pi / 4} \tan ^{6}(x) \sec ^{4}(x) d x$.
A. $\frac{1}{9}+\frac{1}{7}$
B. $\frac{1}{8}+\frac{1}{6}$
C. $\frac{1}{7}-\frac{1}{5}$
D. $\frac{1}{7}+\frac{1}{5}$
E. 0
13. (4 points) What is the form of the partial fraction decomposition of $\frac{1}{\left(x^{2}+1\right)(x-3)^{2}}$?
A. $\frac{A x+B}{x^{2}+1}+\frac{C}{x-3}$
B. $\frac{A x+B}{x^{2}+1}+\frac{C}{(x-3)^{2}}$
C. $\frac{A}{x^{2}+1}+\frac{B}{x-3}+\frac{C}{(x-3)^{2}}$
D. $\frac{A}{x+1}+\frac{B}{x^{2}+1}+\frac{C}{x-3}+\frac{D}{(x-3)^{2}}$
E. $\frac{A x+B}{x^{2}+1}+\frac{C}{x-3}+\frac{D}{(x-3)^{2}}$
14. (4 points) Compute the integral $\int \frac{\sin x}{3+\cos x} d x$.
A. $\ln (3+\cos x)+C$
B. $-\ln (3+\cos x)+C$
C. $\ln (3+\sec x)+C$
D. $\frac{1}{3} x+\ln (|\sec (x)|)+C$
E. $-\frac{1}{3} \cos (x)+\ln (|\sec (x)|)+C$
15. (4 points) Is the improper integral $\int_{1}^{\infty} \frac{2+\sin (x)}{x^{2}} d x$ convergent?
A. It is convergent because $0 \leq \frac{1}{x^{2}} \leq \frac{2+\sin (x)}{x^{2}}$ and $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ is convergent.
B. It is convergent because $0 \leq \frac{2+\sin (x)}{x^{2}} \leq \frac{3}{x^{2}}$ and $\int_{1}^{\infty} \frac{3}{x^{2}} d x$ is convergent.
C. It is divergent because $0 \leq \frac{2+\sin (x)}{x^{2}} \leq \frac{3}{x^{2}}$ and $\int_{1}^{\infty} \frac{3}{x^{2}} d x$ is divergent.
D. It is divergent because $0 \leq \frac{1}{x^{2}} \leq \frac{2+\sin (x)}{x^{2}}$ and $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ is divergent.
E. None of the above; the comparison theorem for improper integrals cannot be applied to this integral.
16. (4 points) Evaluate $\lim _{x \rightarrow \infty} \frac{\ln \left(3 x^{2}\right)}{\ln (5 x+1)}$.
A. $\frac{3}{5}$
B. $\frac{6}{5}$
C. 2
D. $\frac{\ln (6)}{\ln (5)}$
E. The limit does not exist
17. (4 points) The rate of decay of a radioactive material is proportional to the amount of that material present. If it takes 5 years for one third of the material to decay, how many years does it take for half of the material to decay?
A. $\frac{5 \ln \left(\frac{2}{3}\right)}{\ln \left(\frac{1}{2}\right)}$
B. $\frac{\ln \left(\frac{2}{3}\right)}{5}$
C. $\frac{\ln \left(\frac{2}{3}\right)}{5 \ln \left(\frac{1}{2}\right)}$
D. $\frac{5 \ln \left(\frac{1}{2}\right)}{\ln \left(\frac{2}{3}\right)}$
E. $5 \ln \left(\frac{3}{4}\right)$

More Challenging Questions. Show all work to receive credit. Please BOX your final answer.
18. (8 points) Find the integral $\int(\sqrt{\sin (2 x)}-\cos (2 x))^{2} d x$

Solution: First expand the square to get

$$
=\int \sin (2 x)-2 \sqrt{\sin (2 x)} \cos (2 x)+\cos ^{2}(2 x) d x
$$

The three terms we integrate separately:

$$
\begin{aligned}
\int \sin (2 x) d x & =-\frac{1}{2} \cos (2 x)+C \\
\int-2 \sqrt{\sin (2 x)} \cos (2 x) d x & =-\int \sqrt{u} d u \\
& =-\frac{2}{3} u^{3 / 2}+C \\
& =-\frac{2}{3} \sin ^{3 / 2}(2 x)+C \\
\int \cos ^{2}(2 x) d x & =\int \frac{1}{2}(1+\cos (4 x)) d x \\
& =\frac{1}{2} x+\frac{1}{8} \sin (4 x)+C
\end{aligned} \quad(u=\sin (2 x), d u=2 \cos (2 x) d x)
$$

So, final answer is:

$$
-\frac{1}{2} \cos (2 x)-\frac{2}{3} \sin ^{3 / 2}(2 x)+\frac{1}{2} x+\frac{1}{8} \sin (4 x)+C
$$

19. (6 points) Prove that the curves $\quad y=\frac{\pi}{6}-\sin ^{-1}\left(\frac{x}{2}\right) \quad$ and $\quad y=\frac{\sqrt{3}}{2}\left(e^{x^{2}-1}-1\right) \quad$ intersect at right angles at the point $(1,0)$.

Solution: Two curves intersect at right angles if their slopes multiply to equal -1 . (From Calc I.) Curve 1:

$$
y^{\prime}=-\frac{1}{\sqrt{1-\frac{x^{2}}{4}}} \cdot \frac{1}{2} \Longrightarrow y^{\prime}(1)=-\frac{1}{\sqrt{3}} .
$$

Curve 2:

$$
y^{\prime}=\frac{\sqrt{3}}{2} e^{x^{2}-1} \cdot 2 x \Longrightarrow y^{\prime}(1)=\sqrt{3} .
$$

Indeed, the product of their slopes multiply to equal -1 .

