1

Standard Response Questions. Show all work to receive credit. Please **BOX** your final answer.

1. (7 points) Let R be the region in the first quadrant below the line y = 3 and above the curve $y = e^x$, (shown in the picture). Find the volume of the solid formed by revolving R about the x-axis.

Solution: Intersection of y = 3 and $y = e^x$ happens at $e^x = 3 \implies x = \ln 3$. So now we evaluate

$$\pi \int_0^{\ln 3} 9 - e^{2x} \, dx = \pi \left[9x - \frac{1}{2}e^{2x} \right]_0^{\ln 3} = \pi \left[9\ln 3 - \frac{1}{2} \cdot 9 + \frac{1}{2} \right] = \left[\pi \left[9\ln(3) - 4 + \frac{1}{2} \right] \right]$$

2. (7 points) An underground tank is a cone with radius 7 feet and height 15 feet. The tank is full of water (water weighs 62.5 lb/ft³). How much work is required to empty the tank by pumping the water to a height of 3 ft above ground level?

Write your answer as an integral, but do not evaluate the integral.

Solution: Measure y from the bottom. The radius and height of the cone are related through $r = \frac{7}{15}y$. Distance to pump is 18 - y and volume of slice is $\pi \left(\frac{7}{15}y\right)^2 dy$. So

Work =
$$\int_0^{15} \pi \left(\frac{7}{15}y\right)^2 \cdot 62.5 \cdot (18 - y) \, dy$$
 ft-lbs

Remark: if labeling with y from ground level, then $r(y) = 7 - \frac{7}{15}y$, and distance pumped is y + 3. So the resulting integral would be

$$\int_0^{15} \pi \left(7 - \frac{7}{15}y\right)^2 \cdot 62.5 \cdot (3+y) \, dy.$$

3. (7 points) Differentiate the function $f(x) = (\ln x)^{\cosh(x)}$.

Solution: Log differentiation:

$$\frac{1}{y} \cdot y' = \frac{d}{dx} \left[\cosh(x) \cdot \ln(\ln(x)) \right] = \left[\sinh(x) \ln(\ln(x)) + \cosh(x) \frac{1}{\ln(x)} \frac{1}{x} \right]$$

 \mathbf{SO}

$$y' = (\ln x)^{\cosh(x)} \left[\sinh(x)\ln(\ln(x)) + \cosh(x)\frac{1}{\ln(x)}\frac{1}{x} \right]$$

Solution: Change of base:

$$f(x) = e^{\ln(\ln(x))\cosh(x)}$$

 \mathbf{SO}

$$f'(x) = e^{\ln(\ln(x))\cosh(x)} \left[\cosh(x) \cdot \ln(\ln(x))\right]' = e^{\ln(\ln(x))\cosh(x)} \left[\sinh(x)\ln(\ln(x)) + \cosh(x)\frac{1}{\ln(x)}\frac{1}{x}\right]$$

4. (7 points) Use partial fractions to find $\int \frac{x+7}{x^2-x-2} dx$.

Solution:
$$x^2 - x - 2 = (x - 2)(x + 1)$$
. So $\frac{x + 7}{(x - 2)(x + 1)} = \frac{A}{x - 2} + \frac{B}{x + 1}$. Multiply through $x + 7 = A(x + 1) + B(x - 2)$.

Solve (cover up or linear system) $\implies A = 3, B = -2.$

$$\int \frac{3}{x-2} - \frac{2}{x+1} \, dx = \boxed{3\ln(|x-2|) - 2\ln(|x+1|) + C}$$

5. (6 points) Evaluate the definite integral $\int_{e}^{e^2} \frac{1}{x\sqrt{\ln x}} dx$.

Solution: u substitution: $u = \ln x$, $du = \frac{1}{x} dx$. So

$$\int \frac{1}{x\sqrt{\ln x}} \, dx = \int \frac{1}{\sqrt{u}} \, du = 2\sqrt{u} + C = 2\sqrt{\ln x} + C$$

so therefore

$$\int_{e}^{e^{2}} \frac{1}{x\sqrt{\ln x}} \, dx = 2\sqrt{\ln x} \Big|_{e}^{e^{2}} = 2\sqrt{\ln e^{2}} - 2\sqrt{\ln e} = \boxed{2\sqrt{2} - 2}$$

6. (a) (2 points) Find the derivative of $y = x \ln(x) - x$. Solution:

$$y' = \ln(x) + x \cdot \frac{1}{x} - 1 = \ln(x).$$

(b) (6 points) Integrate
$$\int (\ln x)^2 dx$$
.

Solution: Integrate by parts $\begin{array}{cc} u = (\ln x)^2 & du = 2\ln(x)\frac{1}{x}dx \\ v = x & dv = dx \end{array}$

$$= x(\ln x)^2 - \int 2\ln(x) \, dx$$

The second integral we can use part (a):

$$= x(\ln x)^{2} - 2(x\ln(x) - x) + C$$

Remark: alternatively one can integrate by parts a second time.

7. (7 points) For the function $y = \sin^{-1}(x)$, derive the formula $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$ using either implicit differentiation or the general formula for $(f^{-1})'$. Show all work and make your reasoning clear.

Solution: Implicit differentiation:

$$y = \sin^{-1}(x)$$

$$\sin(y) = x$$

$$\cos(y) \cdot y' = 1$$

$$y' = \frac{1}{\cos(y)} = \frac{1}{\cos(\sin^{-1}(x))} = \frac{1}{\sqrt{1 - x^2}}$$

(Students should show some work evaluating $\cos(\sin^{-1}(x))$ using either trig identity $\cos^2(y) = 1 - \sin^2(y)$ or triangle drawing.)

Solution: Inverse function formula:

$$(\sin^{-1})'(x) = \frac{1}{(\sin)'(y)}$$
 when $x = \sin(y)$.

 So

$$(\sin^{-1})'(x) = \frac{1}{\cos(y)} = \frac{1}{\sqrt{1-x^2}}$$

(Student should show some work evaluating $\cos(\sin^{-1}(x))$ using either trig identity $\cos^2(y) = 1 - \sin^2(y)$ or triangle drawing.)

8. (7 points) Integrate
$$\int \frac{1}{(9+x^2)^{3/2}} dx$$
.

Solution: Trig substitution: $x = 3 \tan(\theta)$, $dx = 3 \sec^2(\theta) d\theta$, and $\sqrt{9 + x^2} = 3 \sec(\theta)$.

$$= \int \frac{1}{(3\sec(\theta))^3} \cdot 3\sec^2(\theta) \ d\theta = \frac{1}{9} \int \frac{1}{\sec\theta} \ d\theta = \frac{1}{9} \int \cos\theta \ d\theta = \frac{1}{9} \sin\theta + C.$$

If $\tan \theta = x/3$, then $\sin \theta = x/\sqrt{3^2 + x^2}$ (draw a triangle, or use that $\sin \theta = \tan \theta / \sec \theta$). So

$$\int \frac{1}{\left(9+x^2\right)^{3/2}} \, dx = \boxed{\frac{1}{9} \frac{x}{\sqrt{9+x^2}} + C}$$

Multiple Choice. Circle the best answer. No work needed. No partial credit available.

- 9. (4 points) The derivative of $y = \cosh(x^2) + \sinh(2x)$ is:
 - A. $2x \sinh(x^2) + 2\cosh(2x)$ B. $-2x \sinh(x^2) + 2\cosh(2x)$ C. $2x \sinh(2x) - 2\cosh(x^2)$ D. $2x \sinh(x^2) - 2\cosh(2x)$
 - E. $2x \sinh(2x) + 2\cosh(x^2)$

10. (4 points) The function
$$f(x) = \int_{1}^{e^{x}} \frac{1}{t} dt$$
 is equal to
A. $e^{x} - 1$ B. $\frac{1}{e^{x}} - 1$ C. $1 - \frac{1}{e^{2x}}$ D. x E. $x - 1$

11. (4 points) What is the solution y(x) of the initial value problem $y' = \frac{x^2 + 1}{2y}$ with y(0) = 1?

A.
$$y = e^{\frac{1}{6}x^3 + \frac{1}{2}x}$$

B. $y = \sqrt{\frac{1}{3}x^3 + x + 1}$
C. $y = \frac{1}{6}x^3 + \frac{1}{2}x + 1$
D. $y = 1 - \sqrt{x^3 + x}$
E. $y = \frac{1}{2}x^2 + 1$

12. (4 points) Evaluate $\int_0^{\pi/4} \tan^6(x) \sec^4(x) dx$. A. $\frac{1}{9} + \frac{1}{7}$ B. $\frac{1}{8} + \frac{1}{6}$ C. $\frac{1}{7} - \frac{1}{5}$ D. $\frac{1}{7} + \frac{1}{5}$ E. 0

13. (4 points) What is the form of the partial fraction decomposition of $\frac{1}{(x^2+1)(x-3)^2}$?

A.
$$\frac{Ax + B}{x^2 + 1} + \frac{C}{x - 3}$$

B.
$$\frac{Ax + B}{x^2 + 1} + \frac{C}{(x - 3)^2}$$

C.
$$\frac{A}{x^2 + 1} + \frac{B}{x - 3} + \frac{C}{(x - 3)^2}$$

D.
$$\frac{A}{x + 1} + \frac{B}{x^2 + 1} + \frac{C}{x - 3} + \frac{D}{(x - 3)^2}$$

E.
$$\frac{Ax + B}{x^2 + 1} + \frac{C}{x - 3} + \frac{D}{(x - 3)^2}$$

14. (4 points) Compute the integral $\int \frac{\sin x}{3 + \cos x} dx.$ A. $\ln(3 + \cos x) + C$ B. $-\ln(3 + \cos x) + C$ C. $\ln(3 + \sec x) + C$ D. $\frac{1}{3}x + \ln(|\sec(x)|) + C$

E.
$$-\frac{1}{3}\cos(x) + \ln(|\sec(x)|) + C$$

15. (4 points) Is the improper integral $\int_{1}^{\infty} \frac{2 + \sin(x)}{x^2} dx$ convergent?

- A. It is convergent because $0 \le \frac{1}{x^2} \le \frac{2 + \sin(x)}{x^2}$ and $\int_1^\infty \frac{1}{x^2} dx$ is convergent.
- B. It is convergent because $0 \le \frac{2 + \sin(x)}{x^2} \le \frac{3}{x^2}$ and $\int_1^\infty \frac{3}{x^2} dx$ is convergent.
- C. It is divergent because $0 \le \frac{2 + \sin(x)}{x^2} \le \frac{3}{x^2}$ and $\int_1^\infty \frac{3}{x^2} dx$ is divergent.
- D. It is divergent because $0 \le \frac{1}{x^2} \le \frac{2 + \sin(x)}{x^2}$ and $\int_1^\infty \frac{1}{x^2} dx$ is divergent.
- E. None of the above; the comparison theorem for improper integrals cannot be applied to this integral.

16. (4 points) Evaluate
$$\lim_{x\to\infty} \frac{\ln(3x^2)}{\ln(5x+1)}$$
.
A. $\frac{3}{5}$ B. $\frac{6}{5}$ C. 2 D. $\frac{\ln(6)}{\ln(5)}$ E. The limit does not exist

17. (4 points) The rate of decay of a radioactive material is proportional to the amount of that material present. If it takes 5 years for one third of the material to decay, how many years does it take for half of the material to decay?

A.
$$\frac{5\ln\left(\frac{2}{3}\right)}{\ln\left(\frac{1}{2}\right)}$$
 B. $\frac{\ln\left(\frac{2}{3}\right)}{5}$ C. $\frac{\ln\left(\frac{2}{3}\right)}{5\ln\left(\frac{1}{2}\right)}$ D. $\frac{5\ln\left(\frac{1}{2}\right)}{\ln\left(\frac{2}{3}\right)}$ E. $5\ln\left(\frac{3}{4}\right)$

More Challenging Questions. Show all work to receive credit. Please **BOX** your final answer.

18. (8 points) Find the integral
$$\int \left(\sqrt{\sin(2x)} - \cos(2x)\right)^2 dx$$

Solution: First expand the square to get

$$= \int \sin(2x) - 2\sqrt{\sin(2x)}\cos(2x) + \cos^2(2x) \, dx$$

The three terms we integrate separately:

$$\int \sin(2x) \, dx = -\frac{1}{2} \cos(2x) + C$$

$$\int -2\sqrt{\sin(2x)} \cos(2x) \, dx = -\int \sqrt{u} \, du \qquad (u = \sin(2x), du = 2\cos(2x)dx)$$

$$= -\frac{2}{3}u^{3/2} + C$$

$$= -\frac{2}{3}\sin^{3/2}(2x) + C$$

$$\int \cos^2(2x) \, dx = \int \frac{1}{2}(1 + \cos(4x)) \, dx$$

$$= \frac{1}{2}x + \frac{1}{8}\sin(4x) + C$$

So, final answer is:

$$-\frac{1}{2}\cos(2x) - \frac{2}{3}\sin^{3/2}(2x) + \frac{1}{2}x + \frac{1}{8}\sin(4x) + C$$

19. (6 points) Prove that the curves $y = \frac{\pi}{6} - \sin^{-1}(\frac{x}{2})$ and $y = \frac{\sqrt{3}}{2} \left(e^{x^2-1} - 1\right)$ intersect at right angles at the point (1, 0).

Solution: Two curves intersect at right angles if their slopes multiply to equal -1. (From Calc I.) Curve 1:

$$y' = -\frac{1}{\sqrt{1 - \frac{x^2}{4}}} \cdot \frac{1}{2} \implies y'(1) = -\frac{1}{\sqrt{3}}.$$

Curve 2:

$$y' = \frac{\sqrt{3}}{2}e^{x^2 - 1} \cdot 2x \implies y'(1) = \sqrt{3}.$$

Indeed, the product of their slopes multiply to equal -1.