Standard Response Questions. Show all work to receive credit. Please BOX your final answer.

1. Let R be the region in the first quadrant bounded by $y=\sin x, y=\cos x$, and $x=0$.
(a) (2 points) Sketch the region R on the axes to the right.
(b) (3 points) Set up BUT DO NOT EVALUATE the definite integral representing the volume of the resulting solid if the region R is rotated about the x-axis.

$$
\pi \int_{0}^{\pi / 4} \cos ^{2} x-\sin ^{2} x d x
$$

2. (7 points) Evaluate the integral $\int_{0}^{3} \frac{d x}{9+x^{2}}$

$$
u=x / 3 \quad d u=d x / 3
$$

$$
\frac{1}{3} \int \frac{1}{1+u^{2}} d u
$$

$$
=\frac{1}{3} \tan ^{-1}\left(\frac{x}{3}\right) \int_{0}^{3}
$$

$$
=\frac{1}{3}\left(\tan ^{-1}(1)-\tan ^{-1}(0)\right)
$$

$$
=\frac{1}{3}\left(\frac{\pi}{4}-0\right)=\frac{\pi}{12}
$$ $\int \frac{3 \sec ^{2} \theta d \theta}{9+9 \tan ^{2} \theta}$

$x=3 \tan \theta \quad d x=3 \sec ^{2} \theta d \theta$

$$
\begin{aligned}
& \int \frac{3 \sec ^{2} \theta d \theta}{99 \tan ^{2} \theta} \\
& \begin{aligned}
\int \frac{3 \sec ^{2} \theta d \theta}{9 \sec ^{2} \theta} & =\frac{1}{3} \theta \\
& =\frac{1}{3} \tan ^{-1}\left(\frac{x}{3}\right)
\end{aligned}
\end{aligned}
$$

So

$$
\begin{aligned}
& =\frac{1}{3}\left(\operatorname{tam}^{-1}(1)-\tan ^{-1}(0)\right) \\
& =\frac{1}{3}\left(\frac{\pi}{4}-0\right)=\frac{\pi}{12}
\end{aligned}
$$

3. Evaluate the following integrals.
(a) (6 points)

$$
\begin{aligned}
& \begin{aligned}
u & =\sec x \\
d u & =\sec x \tan x \\
\int u^{2} d u & =\frac{1}{3} u^{3}+C \\
& =\frac{1}{3} \sec ^{3} x+C
\end{aligned}
\end{aligned}
$$

(b) (6 points)

$$
\begin{aligned}
& u=\ln y \quad d v=y d y \\
& d u=\frac{1}{y} d y \quad v=\frac{1}{2} y^{2} \\
& =\frac{1}{2} y^{2} \cdot \ln y-\int \frac{1}{2} y^{2} \cdot \frac{1}{4} d y \\
& =\frac{1}{2} y^{2} \cdot \ln y-\frac{1}{2}\left(\frac{1}{2} y^{2}\right)+C \\
& =\frac{1}{2} y^{2} \cdot \ln y-\frac{1}{4} y^{2}+C
\end{aligned}
$$

4. Determine whether each of the series below is convergent or divergent. For full credit, you must show your work and indicate which tests) you used.
(a) (6 points) $\sum_{n=2}^{\infty} \frac{\sqrt{n}}{\ln (3 n)} \quad($ for $n \geq 2)$

$$
\ln (3 n) \leqslant 3 n \Rightarrow \frac{1}{3 n} \leqslant \frac{1}{\ln (3 n)} \Rightarrow \frac{\sqrt{n}}{3 n} \leqslant \frac{\sqrt{n}}{\ln (3 n)}
$$

so since $\sum \frac{\sqrt{n}}{3 n}=\frac{1}{3} \sum \frac{1}{n^{1 / 2}}$ diverges by p-series we know $\sum \frac{\sqrt{n}}{\ln (3 n)}$ diverges by DCT,
(b) (6 points) $\sum_{n=2}^{\infty} \frac{2}{n \sqrt{n+1}}$ Use LCT with $f_{n}=\frac{1}{n \sqrt{n}}=\frac{1}{n^{3 / 2}}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left[\frac{2}{n \sqrt{n+1}} \cdot \frac{n \sqrt{n}}{1}\right] & =\lim _{n \rightarrow \infty} 2 \cdot \frac{n}{n} \cdot \sqrt{\frac{n}{n+1}} \\
& =2 \cdot 1 \cdot \sqrt{1}=2
\end{aligned}
$$

so since $\sum \frac{1}{n^{3 / 2}}$ conn by p-series, $\sum \frac{2}{n \sqrt{n+1}}$ must also cons by LCT.
5. (6 points) Evaluate $\int \frac{\sin x}{x} d x$ as an infinite series. Express your answer in sigma notation.

$$
\begin{aligned}
\sin x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
\frac{\sin x}{x} & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n+1)!} \\
\int \frac{\sin x}{x} & =\sum_{n=0}^{\infty}\left[\frac{(-1)}{(2 n+1)!} \cdot \frac{x^{2 n+1}}{(2 n+1)}\right]+C
\end{aligned}
$$

6. (6 points) Consider the curve C given by the parametric equations:

$$
x=2+3 t, \quad y=\cosh (3 t)
$$

Find the arc length of the curve on the interval $0 \leq t \leq 1$.

$$
\begin{aligned}
\quad x^{\prime}=3 \quad y^{\prime} & =\sinh (3 t) \cdot 3 \\
L= & \int_{0}^{1} \sqrt{9+9 \sinh ^{2}(3 t)} d t \\
= & \int_{0}^{1} \sqrt{9 \cosh ^{2}(3 t)} d t \\
=\int_{0}^{1} 3 \cosh (3 t) d t & =\left.\sinh (3 t)\right|_{0} ^{1} \\
& =\sinh (3)
\end{aligned}
$$

7. Two curves in polar coordinates are given by equations $r=1$ and $r=1-\sin \theta$, respectively.
(a) (3 points) Sketch both curves.

Solution: See here,
(b) (3 points) Determine the intersection points of these two curves. Express these points in polar coordinates (r, θ).

Solution: The points of intersection occur at $(1,0)$ and $(1, \pi)$.
(c) (6 points) Set up BUT DO NOT EVALUATE the definite integral representing the area that lies inside the circle $r=1$ and outside the cardioid $r=1-\sin \theta$.

Solution:

$$
\int_{0}^{\pi / 2}\left(1-(1-\sin \theta)^{2}\right) d \theta
$$

8. E
9. B
10. C
11. D
12. A
13. B, C
14. E
15. A
16. E
17. C
18. E
19. C
20. A
21. A
22. A
23. B
24. B
