Basic Sets

Example 1. Let $S = \{1, \{2, 3\}, 4\}$. Indicate whether each statement is true or false.

- (a) |S| = 4
- (b) $\{1\} \in S$
- (c) $\{2,3\} \in S$
- (d) $\{1,4\} \subseteq S$
- (e) $2 \in S$.
- (f) $S = \{1, 4, \{2, 3\}\}$
- (g) $\emptyset \subseteq S$

Example 2. Compute the cardinality of the set, E, where E is defined as

 $E = \{x \in \mathbb{R} : \sin(x) = 1/2 \text{ and } |x| \le 5\}$

Example 3. Suppose $A = \{0, 2, 4, 6, 8\}, B = \{1, 3, 5, 7\}$ and $C = \{2, 8, 4\}$. Find: (a) $A \cup B$ (b) $A \setminus C$ (c) $B \setminus A$ (d) $B \cap C$ (e) $C \setminus B$

Example 4. Prove that $\{9^n : n \in \mathbb{Z}\} \subseteq \{3^n : n \in \mathbb{Z}\}$, but $\{9^n : n \in \mathbb{Z}\} \neq \{3^n : n \in \mathbb{Z}\}$.

Example 5. Prove that $\{9^n : n \in \mathbb{Q}\} = \{3^n : n \in \mathbb{Q}\}.$

Functions

Example 6. For each of the following, determine the largest set $A \subseteq \mathbb{R}$, such that $f : A \to \mathbb{R}$ defines a function. Next, determine the range, $f(A) := \{y \in \mathbb{R} : f(x) = y, \text{ for some } x \in A\}.$

- (a) $f(x) = 1 + x^2$,
- (b) $f(x) = 1 \frac{1}{x}$,
- (c) $f(x) = \sqrt{3x 1}$,
- (d) $f(x) = x^3 8$,
- (e) $f(x) = \frac{x}{x-3}$.

Injective, Surjective, Bijective Functions

Example 7. A function $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is defined as f((m, n)) = 2n - 4m. Verify whether this function is injective and whether it is surjective.

Example 8. Define the operation

$$f(p) := \frac{d}{dx}p.$$

Does f define a function from \mathbb{P}_4 to \mathbb{P}_4 ? Justify your answer. Is f an injective function from \mathbb{P}_4 to \mathbb{P}_4 ? Justify your answer. Is f a surjective function from \mathbb{P}_4 to \mathbb{P}_4 ? Justify your answer.

Example 9. Prove that the function $f : \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{5\}$ defined by $f(x) = \frac{5x+1}{x-2}$ is bijective.

Example 10. Prove or disprove that the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3 - x$ is injective. *Hint: A graph can help, but a graph is not a proof.*

Example 11. Let $A = \mathbb{R} \setminus \{1\}$ and define $f : A \to A$ by $f(x) = \frac{x}{x-1}$ for all $x \in A$.

- (i) Prove that f is bijective.
- (ii) Determine f^{-1} .

Example 12. The function $f : \mathbb{R}^2 \to \mathbb{R}^2$ is defined by

$$f(x,y) = (2x - 3y, x + 1)$$

- (a) Show that f is a bijection.
- (b) Determine the inverse f^{-1} of f.

Example 13. Define the function, $f : \mathbb{P}_3 \to \mathbb{R}$ via the operation

$$f(p) := \int_0^1 p(x) dx.$$

Is f injective and or surjective from \mathbb{P}_3 to \mathbb{R} ? Justify your answer.

Example 14. Consider the function $f : \mathbb{R} \times \mathbb{N} \to \mathbb{N} \times \mathbb{R}$ defined as f(x, y) = (y, 3xy). Check that this is bijective; find its inverse. Carefully justify that your answer does indeed yield the inverse function.

General Math Proofs

Example 15. Assume that you know that x < y. Carefully justify the statement that

$$x < \frac{x+y}{2} < y.$$

Example 16. Suppose $a, b \in \mathbb{R}$. If a is rational and ab is irrational, then b is irrational.

Example 17. Show that there exists a positive even integer m such that for every positive integer n,

$$\left|\frac{1}{m} - \frac{1}{n}\right| \le \frac{1}{2}.$$

Example 18. Prove: For every real number $x \in [0, \pi/2]$, we have $\sin x + \cos x \ge 1$. **Example 19.** Suppose $x, y \in \mathbb{R}^+$. Prove if xy > 100 then x > 10 or y > 10.

MSU

Logic

Example 20. For the sets $A = \{1, 2, ..., 10\}$ and $B = \{2, 4, 6, 9, 12, 25\}$, consider the statements

 $P: A \subseteq B. \qquad Q: |A \setminus B| = 6.$

Determine which of the following statements are true.

(a) $P \lor Q$ (b) $P \lor (\neg Q)$ (c) $P \land Q$ (d) $(\neg P) \land Q$ (e) $(\neg P) \lor (\neg Q)$.

Example 21. Let P: 15 is odd. and Q: 21 is prime. State each of the following in words, and determine whether they are true or false.

(a) $P \lor Q$ (b) $P \land Q$ (c) $(\neg P) \lor Q$ (d) $P \land (\neg Q)$

Example 22. Rewrite the following using logical connectives and quantifiers

- (a) If f is a polynomial and its degree is greater than 2, then f' is not constant.
- (b) The number x is positive but the number y is not positive.

Example 23. Which of the following best identifies $f : \mathbb{R} \to \mathbb{R}$ as a constant function, where x and y are real numbers.

- (a) $\exists x, \forall y, f(x) = y.$
- (b) $\forall x, \exists y, f(x) = y.$
- (c) $\exists y, \forall x, f(x) = y.$
- (d) $\forall y, \exists x, f(x) = y.$

Example 24. Negate the following statements:

- (a) $\exists y \in \mathbb{Z}, \forall x \in \mathbb{Z}, x + y = 1.$
- (b) $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, xy = x.$

Example 25. In each of the following cases explain what is meant by the statement and decide whether it is true or false.

- (a) $\lim_{x \to \infty} f(x) = L$ if $\forall \varepsilon > 0 \quad \exists \delta > 0$ such that $0 < |x c| < \delta \implies |f(x) L| < \varepsilon$.
- (b) $\lim_{x \to c} f(x) = L$ if $\exists \delta > 0 \quad \forall \varepsilon > 0$ such that $0 < |x c| < \delta \implies |f(x) L| < \varepsilon$.
- (c) $f: A \to B$ is surjective provided $\forall y \in B, \exists x \in A$ such that f(x) = y.

Induction

Example 26. If n is a non-negative integer, use mathematical induction to show that $5 \mid (n^5 - n)$.

Example 27. Prove by induction that $\sum_{i=1}^{n} i^2 = \frac{n}{6}(n+1)(2n+1).$

Example 28. Prove that if $n \in \mathbb{N}$, then $4^{2n} + 10n - 1$ is divisible by 25.

Even Odd Proofs

Example 29 (Prove using Contradiction). Suppose $a \in \mathbb{Z}$. Prove that if a^2 is even, then a is even.

Example 30. Prove that If $a, b \in \mathbb{Z}$, then $a^2 - 4b \neq 2$.

Example 31. Let n be an integer. Show that n^2 is odd if and only if n is odd.

Example 32. Suppose $a, b, c \in \mathbb{Z}$. If $a^2 + b^2 = c^2$, then a or b is even.

Example 33. Prove that there is no largest even integer.

Example 34. Prove the following claim

Claim: Suppose $a \in \mathbb{Z}$. If $a^2 - 2a + 7$ is even, then a is odd.

Real Analysis

Indexed Sets

Example 35. Let $B_1 = \{1, 2\}, B_2 = \{2, 3\}, \dots, B_{10} = \{10, 11\}$; that is, $B_i = \{i, i + 1\}$ for some $i = 1, 2, \dots, 10$. Determine the following:

$$(i) \bigcup_{i=1}^{5} B_{i} \qquad (ii) \bigcup_{i=1}^{10} B_{i}$$

$$(iii) \bigcup_{i=3}^{7} B_{i} \qquad (iv) \bigcup_{i=j}^{k} B_{i}, \text{ where } 1 \le j \le k \le 10.$$

$$(v) \bigcap_{i=1}^{10} B_{i} \qquad (vi) B_{i} \cap B_{i+1}$$

$$(vii) \bigcap_{i=j}^{j+1} B_{i}, \text{ where } 1 \le j < 10 \qquad (viii) \bigcap_{i=j}^{k} B_{i}, \text{ where } 1 \le j \le k \le 10.$$

Example 36. Prove that $\bigcap_{x \in \mathbb{N}} [3 - (1/x)^2, 5 + (1/x)^2] = [3, 5].$

MSU

Bounded and Unbounded Sets

Example 37. Discuss whether the following sets are bounded or not bounded.

(a)
$$A = \{-2, -1, 1/2\}.$$

(b) $B = (-\infty, \sqrt{2}).$
(c) $C = \{1/2, 3/2, 5/2, 7/2, 9/2, \dots\} = \{\frac{2n-1}{2} | n \in \mathbb{N}\}.$
(d) $D = \left\{\frac{(-1)^n}{n} : n \in \mathbb{N}\right\}$
(e) $E = \left\{\frac{-1}{n} : n \in \mathbb{Q} \setminus \{0\}\right\}$

Sequences

Example 38. For each of the following, determine whether or not they converge. If they converge, what is their limit? No proofs are necessary, but provide some algebraic justification.

- (a) $\left\{\frac{3n+1}{7n-4}\right\}_{n\in\mathbb{N}}$
- (b) $\left\{\sin\left(\frac{n\pi}{4}\right)\right\}_{n\in\mathbb{N}}$
- (c) $\{(1+1/n)^2\}_{n\in\mathbb{N}}$
- (d) $\{(-1)^n n\}_{n\in\mathbb{N}}$
- (e) $\left\{\sqrt{n^2+1}-n\right\}_{n\in\mathbb{N}}$

Example 39. Using the definition of convergence, that is, an $\varepsilon - N$ argument, prove that the following sequences converge to the indicated number:

- (a) $\lim_{n \to \infty} \frac{1}{n} = 0.$
- (b) $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0.$
- (c) $\lim_{n \to \infty} \frac{n}{2n+1} = \frac{1}{2}$.

Example 40. For each of the following, determine whether or not they converge. If they converge, what is their limit? No proofs are necessary, but provide some algebraic justification.

(a) $\left\{3 + \frac{(-1)^n 2}{n}\right\}_{n \in \mathbb{N}}$ (b) $\left\{\frac{n^2 - 2n + 1}{n - 1}\right\}_{n \in \mathbb{N} \setminus \{1\}}$ (c) $\left\{\frac{n}{n + 1}\right\}_{n \in \mathbb{N}}$ **Example 41.** Using the definition of convergence, that is, an $\varepsilon - N$ argument, prove that the following sequences converge to the indicated number:

(a)
$$\lim_{n \to \infty} \left(3 + \frac{2}{n^2} \right) = 3.$$
$$\sin(n)$$

(b) $\lim_{n \to \infty} \frac{\sin(n)}{2n+1} = 0.$

Example 42. Prove that the sequence $\{(-1)^n\}_{n\in\mathbb{N}}$ does not converge.

Example 43. Use the formal definition of the limit of a sequence to prove that

$$\lim_{n \to \infty} \frac{2n - 1}{3n + 2} = \frac{2}{3}.$$

Open and Closed Sets

Example 44. Which of the following sets are open?

$$(i)(-3,3) \quad (ii)(-4,5] \quad (iii)(0,\infty) \quad (iv)\{(x,y) \in \mathbb{R}^2 : y > 0\}$$
$$(iv) \bigcup_{n=1}^5 \left(-1 + \frac{1}{n}, 1 - \frac{1}{n}\right), \text{ where } n \in \mathbb{N} \quad (v)\{x \in \mathbb{R} : |x-1| < 2\}.$$

Example 45. Let A = [2, 5]. Discuss whether A^c an open set.

Example 46. Discuss which of the following sets are open.

- (a) (2,3).
- (b) (-4, 8].
- (c) [1,3).
- (d) $(-\infty,\infty)$.
- (e) $[1,5] \cap [2,3].$

Example 47. Which of the following sets are closed? Justify your answer.

(i)
$$A = [2,5]$$
 (ii) $B = (-1,0) \cup (0,1)$ (iii) $C = \{x \in \mathbb{R} : |x-1| < 2\}$
(iv) $D = \{-2,-1,0,1,2\}$ (v) \mathbb{Z}

Linear Algebra

Vector Spaces

Example 48. Show that the set \mathbb{R}^2 over \mathbb{R} is not a vector space under the following definitions for vector addition and scalar multiplication:

$$x + y := (x_1 - y_1, x_2 - y_2)$$

and

$$\lambda x := (\lambda x_1, \lambda x_2),$$

where $x = (x_1, x_2) \in \mathbb{R}^2$, $y = (y_1, y_2) \in \mathbb{R}^2$, and $\lambda \in \mathbb{R}$.

Example 49. Under the usual matrix operations, is the set

$$\left\{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

a vector space over \mathbb{R} ? Justify your answer.

Example 50. Define the set $V = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 \ge 2x_1 + 1\}$. Sketch a picture of the set V inside of the plane, \mathbb{R}^2 . Is V a vector space over \mathbb{R} ? Justify your answer!

Example 51. Define

$$V = \{ p \in \mathbb{P}_2 : \forall x \in \mathbb{R}, p'(1) = 0 \}.$$

Is V a vector space over \mathbb{R} ?

Example 52. Find the additive inverse, in the vector space, of the following:

- (a) In \mathbb{P}_3 , of the element $-3 2x + x^2$.
- (b) In the space of 2×2 matrices, of the element $\begin{pmatrix} 1 & -1 \\ 0 & 3 \end{pmatrix}$.
- (c) In $\{ae^x + be^{-x} \mid a, b \in \mathbb{R}\}$, the space of functions of the real variable x, the element $3e^x 2e^{-x}$.

You may assume that these vector spaces are defined over \mathbb{R} and that in each case, natural definitions of addition and scalar multiplication hold.

Example 53. Show that the set of linear polynomials $\mathbb{P}_1 = \{a_0 + a_1 x \mid a_0, a_1 \in \mathbb{R}\}$ under the usual polynomial addition and scalar multiplication operations is a vector space over \mathbb{R} .

Linear Maps

Example 54. Define the function $A : \mathbb{P}^3 \to \mathbb{P}^5$ by

$$A(p)(x) = x^2 p(x)$$
 for $x \in \mathbb{R}$

Is A a linear function? Justify your answer.

Example 55. Suppose $b, c \in \mathbb{R}$. Define $T : \mathbb{R}^3 \to \mathbb{R}^2$ by

$$T(x, y, z) = (2x - 4y + 3z + b, 6x + cxyz).$$

Show that T is linear if and only if b = c = 0.

Example 56. For each of the following L, answer "yes" or "no", and briefly justify your answer:

(a) Is $L : \mathbb{R} \to \mathbb{R}$, with $L(x) = \sin(x)$, a linear function?

(b) Is $L : \mathbb{R} \to \mathbb{R}$, with $L(x) = |x|^{1/2}$, a linear function?

(c) Is $L : \mathbb{R} \to \mathbb{R}$, with L(x) = 51.5x, a linear function?

(d) Is $L : \mathbb{P}_3 \to \mathbb{P}_3$ defined by L(p) = 3p a linear function? Find the images under L of $p, q \in \mathbb{P}_3$ defined by $p(x) = x^3 - 7$ and $q(x) = 2x^2 + 3x + 5$.

Example 57. Define the function $T : \mathbb{R}^2 \to \mathbb{R}^2$ by the transformation

$$T((x_0, x_1)) = (x_0, 0),$$

where $(x_0, x_1) \in \mathbb{R}^2$. Is T a linear function? Justify your answer.

Abstract Algebra

Divisibility and Remainders

Example 58. Use the Euclidean Algorithm to find the greatest common divisor for each of the following pairs of integers:

(a) 51 and 288 (b) 357 and 629 (c) 180 and 252.

Example 59. Prove that the square of every odd integer is of the form 4k + 1, where $k \in \mathbb{Z}$ (that is, for each odd integer $a \in \mathbb{Z}$, there exists $k \in \mathbb{Z}$ such that $a^2 = 4k + 1$).

Example 60. Prove that if a divides b and c divides d, then ac divides bd.

Example 61. Answer true or false and give a complete justification. If p is prime, then $p^2 + 1$ is prime.

Example 62. Let $a, b, c \in \mathbb{Z}$. Prove that if gcd(a, b) = 1 and $c \mid b$ then gcd(a, c) = 1. (Hint: Use proof by contradiction)

Equivalence Relations and Modular Arithmetic

Example 63. For $(a, b), (c, d) \in \mathbb{R}^2$ define $(a, b) \sim (c, d)$ to mean that 2a - b = 2c - d. Show that \sim is an equivalence relation on \mathbb{R}^2 .

Example 64. Define a relation \sim on \mathbb{Z} as $x \sim y$ if and only if $4 \mid (x + 3y)$. Prove \sim is an equivalence relation. Describe its equivalence classes.

Example 65. Let $X = \mathbb{R}^2$, the *xy*-plane. Define $(x_1, y_1) \sim (x_2, y_2)$ to mean

$$x_1^2 + y_1^2 = x_2^2 + y_2^2.$$

Is \sim an equivalence relation? Justify your answer. Give a geometric interpretation of the equivalence classes of \sim .

Example 66. Do the following calculations in \mathbb{Z}_9 (see page 238 of the text for a description of this notation), in each case expressing your answer as [a] with $0 \le a \le 8$.

(a) [8] + [8] (b) [24] + [11] (c) $[21] \cdot [15]$ (d) $[8] \cdot [8]$.

Example 67. Let a and b be given integers. Prove $a \equiv b \mod 5$ if and only if $9a + b \equiv 0 \mod 5$.