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Abstract

This document contains supplementary material, such as definitions, explanations, examples,
etc., to complement that of the text, “How to Think Like a Mathematician”.
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1 Useful Sets and Spaces

Theorem 1.1. A = B is equivalent to (A ⊆ B and B ⊆ A)

Definition 1.2. The power set of a set, A, is the set which contains all possible subsets of A as its
elements. The power set is denoted as

P(A) = {E : E ⊆ A}.

Definition 1.3. Pn is the collection of all (real) polynomials of degree less than or equal to n. That
is

Pn = {p : p(x) = a0 + a1x+ · · ·+ anx
n, where a0, . . . , an ∈ R}.

Definition 1.4. Let I be any fixed set, and assume that for all r ∈ I, Er, is a set. The operations
of union and intersection over a general index set are defined as⋃

r∈I

Er = {x : x ∈ Er for at least one r ∈ I}

and ⋂
r∈I

Er = {x : x ∈ Er for all r ∈ I} .

Note, another way to write this is(
x ∈

⋃
r∈I

Er

)
⇐⇒ (∃ r0 ∈ I such that x ∈ Er0)

and (
x ∈

⋂
r∈I

Er

)
⇐⇒ (∀ r ∈ I, x ∈ Er) .

As a notational convenience, when I is a simple set that can be listed easily, we sometimes write

∞⋃
i=1

Ei =
⋃
i∈N

Ei

or
21⋃
j=5

Ei =
⋃

j∈{5,6,...,21}

Ej.

Proposition 1.5. Suppose A,B are subsets of a universal set U . Their union and intersection satisfy
the so-called “De Morgan’s Laws” for sets:

i) (A ∪B)c = Ac ∩Bc, and

ii) (A ∩B)c = Ac ∪Bc.

Remark 1.6. The same results hold for Boolean algebra (propositional logic). State this result and
prove it.



Definition 1.7. Let E be a set. A partition of E is a collection, T ⊆ P(E), such that

∀A1, A2 ∈ T such that A1 6= A2, A1 ∩ A2 = ∅

and
E =

⋃
A∈T

A.

(Recall that P(E) is the power set of E, defined earlier in this section.)

Remark 1.8. It is very useful to simply write out what it means to be a partition in plain words. A
partition of E is a collection of subsets of E such that two things happen: (1) the union over all of
the sets in the collection covers all of E and (2) if you take any two distinct subsets in the collection,
they have an empty intersection. So, what you are doing is breaking up E into disjoint pieces and
not leaving any piece of E out. This is incredibly useful for many areas of mathematics. You can
also think of it as exactly what happens with the hard drive on your computer. The hard drive is
one disc, but many people choose to break it up into separate partitions that don’t interact with
each other.

Remark 1.9. It is very important to note a possible simplification in your proofs involving partitions.
Suppose you want to show that T is a partition. If you first confirm that it is true that all sets in T
are also elements of P(E), then you have confirmed that A ⊂ E for all A in T . You may then tell
your reader that you only need to check that

E ⊆
⋃
A∈T

A,

because the reverse set containment is already true by the previous observation.

2 Logic

2.1 Supplement to Chapter 6 - Statements, Negation of Compound
Statements

Definition 2.1. A compound statement is a statement composed of one or more given statements,
and at least one connective: ∧,∨,¬,⇒,⇔.

For example, (P ⇒ Q) ∨ P is a compound statement.

Definition 2.2. Two compound statements are logically equivalent if they have the same truth
table.

Definition 2.3. (see page 54 of textbook) A conditional statement is a statement that requires
an input to become a statement.

For example, the expression, P (x) : “x is even”, is to be understood as something that becomes a
statement after plugging in a value of x. (See pg. 81 of our text for an extremely brief description.)
Formally, we need to define the collection of legal values that can be plugged in, which we call the
domain of the conditional statement. For this problem, we will use the domain Z. For example,
P (2) is true, and P (5) is false.



2.2 Supplement to Chapter 7 - Implications

Definition 2.4. Statements of the form “If statement A is true, then statement B is true.”
are called implications. Mathematically this is denoted by A⇒ B.
In English, this statement can be expressed in the following equivalent ways.

(i) “If A then B”

(ii) “A implies B”

(iii) “A only if B”

(iv) “B if A”

(v) “B whenever A”

(vi) “A is sufficient for B”

(vii) “B is necessary for A”

When is the statement A⇒ B true? For example, is the following statement true: If pigs could fly,
then I am on Mars.?
Note that “A ⇒ B” says nothing about whether the statements A, B themselves are true or false.
The following cases are possible for the implication A⇒ B to be true.

• A - true and B - true

• A - false and B - false

• A - false and B - true

In other words, if the assumption is false, the conclusion could be anything!

Theorem 2.5. The negation of A ⇒ B is equivalent to A and (not B).

¬(A⇒ B) ≡ (A ∧ (¬B))



3 Various facts about real numbers, integers, and rationals

Axiom 3.1. Always assume all of the associativity and commutativity and distributivity as you have
done since you were six years old.
We will assume the following properties of the integers:

1. closed under addition

2. closed under multiplication

e.g. if x, y ∈ Z, then so is (5y10 − xy + x2 − 11) ∈ Z.

Axiom 3.2. We will assume the following properties of the rationals:

1. closed under addition

2. closed under multiplication

3. addition is invertible

4. multiplication is invertible (with the exception of the zero element).

Definition 3.3. The set of even integers is the set

even integers = {n ∈ Z : n = 2k for some k ∈ Z}.

An integer is said to be odd if it is not even. You can check that the set of odd integers is

odd integers = {n ∈ Z : n = 2k + 1 for some k ∈ Z}.



4 Functions

4.1 Some definitions about functions

Definition 4.1. A function from a set X to a set Y is an assignment such for all x ∈ X, there is
assigned exactly one element of Y . This assignment can re-use elements of Y for the corresponding
values of x. In concise terms, we write

f : X → Y,

and for all x ∈ X, f(x) ∈ Y . We call f the function, x the input variable, f(x) the output, X is the
domain, and Y is the co-domain.

Remark 4.2. It is very important to note, you cannot assume you have precisely defined a function
until you have specified three items : the domain, the co-domain, and the assignment rule / formula.
This is a very frequently confused issue, and it can make things very difficult when investigating
properties involving injective, surjective, and bijective.

Definition 4.3. If f : X → Y is a function, we define the graph of f to be the set

graph(f) := {(x, y) ∈ X × Y | y = f(x)} .
Definition 4.4. If f : X → Y is a function, we define the range of f to be the set

range(f) = {y ∈ Y : y = f(x) for some x ∈ X}.
Definition 4.5. Assume that f is a function, f : X → Y . We say the image of A under f is f(A),
and it is defined as

f(A) = {y ∈ Y : y = f(x) for some x ∈ A}.
Definition 4.6. Assume that f and g are both functions, f : X → R and g : X → R. We define the
addition f + g as the new function,

(f + g)(x) = f(x) + g(x).

Definition 4.7. Assume that f : X → Y is a function. We say that it is injective (or one–to–one)
if

for all x1, x2 ∈ X, f(x1) = f(x2) implies x1 = x2.

Definition 4.8. A function f : X → Y is surjective if for all y ∈ Y , there exists x ∈ X such that
f(x) = y.

Definition 4.9. A function, f : X → Y , for X and Y both subsets of R, is said to be increasing if
and only if it holds that

x1, x2 ∈ X and x1 ≤ x2 =⇒ f(x1) ≤ f(x2).

We say f is strictly increasing if the above implication holds with x1 < x2 implies f(x1) < f(x2).

Lemma 4.10. The following functions are strictly increasing:

(i) f : [0,∞)→ [0,∞), f(x) = x2. (Note the restricted domain!)

(ii) f : [0,∞)→ [0,∞), f(x) = x1/2.

(iii) f : [0,∞)→ [0,∞), f(x) = xp, where p > 0 is a real number.

(iv) f : R→ (0,∞), f(x) = ex.

(v) f : (0,∞)→ (0,∞), f(x) = ln(x).



4.2 Some frequently used functions

Definition 4.11. A polynomial of degree n or less is a function that can be expressed as p(x) =
n∑

i=0

aix
i where ai ∈ R for i ∈ {0, 1, . . . , n}.

Definition 4.12. Take p(x) =
n∑

i=0

aix
i and q(x) =

n∑
i=0

bix
i where ai, bi, c ∈ R for

i ∈ {0, 1, . . . , n} then:

(a) (p+ q)(x) :=
n∑

i=0

(ai + bi)x
i

(b) (cp)(x) :=
n∑

i=0

(c · ai)xi

Definition 4.13. Pn is the collection of all (real) polynomials of degree less than or equal to n. That
is

Pn = {p : p(x) = a0 + a1x+ · · ·+ anx
n, where a0, . . . , an ∈ R}.

Definition 4.14. The absolute value of a real number, x, is defined as

|x| =

{
x if x ≥ 0

−x if x < 0.

You can think of |·| as a function (here we use the dot, “·”, as a placeholder), |·| : R → R, given by
the assignment rule listed in the previous sentence.

Definition 4.15. The maximum of two real numbers x and y can be defined as:

max{x, y} =

{
x if x ≥ y

y if x < y.

This can be expanded to 3 or more entries max{x, y, z} intuitively.

Definition 4.16. The minimum of two real numbers x and y can be defined as:

min{x, y} =

{
x if x ≤ y

y if x > y.

This can be expanded to three or more entries min{x, y, z} intuitively.

Definition 4.17. The ceiling function dxe is a function from R→ Z defined by

dxe := min{z ∈ Z | n ≥ x}



5 Real Analysis

5.1 A few properties of the real numbers

Axiom 5.1. The real numbers are endowed with a number of properties that we will take for granted.
Below, we name a few of them:

1. The Archimedean property says that if x ∈ R, then there exists an N ∈ N such that x < N .
That is, if you are challenged with a real number, then you can find a larger integer.

2. If x, y ∈ R, then one, and only one of the following cases can happen:

• Case I: x < y,

• Case II: x = y,

• Case III: x > y.

3. Additive and multiplicative properties:

(a) a+ (b+ c) = (a+ b) + c for all a, b, c ∈ R.

(b) a+ b = b+ a for all a, b ∈ R.

(c) a+ 0 = a for all a ∈ R.

(d) For each a ∈ R, there exists a unique −a ∈ R, with a+ (−a) = 0.

(e) a(bc) = (ab)c for all a, b, c ∈ R.

(f) ab = ba for any a, b ∈ R.

(g) a · 1 = a for any a ∈ R.

(h) For each a 6= 0, there exists a unique a−1 ∈ R, with aa−1 = 1.

(i) a(b+ c) = ab+ ac for all a, b, c ∈ R.

4. Ordered properties:

(a) If a, b ∈ R, then a ≤ b or b ≤ a.

(b) If a ≤ b and b ≤ c, then a ≤ c.

(c) For any x, y, c ∈ R, if x ≤ y then x+ c ≤ y + c.

(d) If a ≤ b, and 0 ≤ c, then ac ≤ bc.

Remark 5.2. Assume the following property of the power function. If b ≥ a ≥ 0 and t > 0 then

1. at ≤ bt, and

2. if also a > 0 and b > 0, then a−t ≥ b−t.

For example, you know well from previous classes that if 0 < a ≤ b, then a1/3 ≤ b1/3, a−1 ≥ b−1,
a79 ≤ b79, and so on.



5.2 Properties of subsets of the real numbers

Definition 5.3. A set, E ⊆ R, is said to be bounded if there exists an M ∈ R such that

|x| ≤M for all x ∈ E.

Definition 5.4. We say the set A ⊆ R, is open, if for all x ∈ A, there exists an r > 0, such that
the interval (x− r, x+ r) ⊆ A.

Definition 5.5. We say a set C ⊆ R is closed, if its complement, Cc ⊆ R is open. (Recall, the
complement is defined via the shorthand notation, Cc = R \ C.)

5.3 Sequences of real numbers

A sequence of real numbers is an ordered list {an}n∈N. Formally, a sequence is a function a : N→ R,
but think of them as simply a list.

Definition 5.6. We say a sequence {an}n∈N converges to the real number L ∈ R if for every
ε > 0, there exists an N ∈ N, such that for all n ≥ N , we have |an − L| < ε.

We will refer to this definition as the “ε-N” definition of convergence.

Definition 5.7. We say a sequence converges if there exists an L ∈ R, such that the sequence
converges to L.

Definition 5.8. We say a sequence, {an}n∈N, is bounded if there exists a real number, say M , such
that for all n ∈ N,

|an| ≤M

Note this is the same thing as saying the set

E =
⋃
n∈N

{an}

is a bounded subset of R.



6 Linear Algebra

Definition 6.1. A set V is a vector space over the reals, R, if it satisfies the following axioms. For
each of the following, assume u, v, w ∈ V are “vectors”, and a, b ∈ R are “scalars”:

(i) Closure of addition: v + w ∈ V , that is “+” is a function such that + : V × V → V .

(ii) Closure of scalar multiplication: av ∈ V , that is “multiplication” is a function with
“multiplication” : R× V → V .

(iii) Associativity of addition: u+ (v + w) = (u+ v) + w.

(iv) Commutativity of addition: u+ v = v + u.

(v) Identity element of addition: There exists an element 0 ∈ V , called the zero vector, such that
v + 0 = v for all v ∈ V .

(vi) Inverse elements of addition: For every v ∈ V , there exists an element −v ∈ V , called the
additive inverse of v, such that v + (−v) = 0.

(vii) Compatibility of scalar multiplication with scalar multiplication: a(bv) = (ab)v.

(viii) Identity element of scalar multiplication: 1v = v, where 1 ∈ R denotes the multiplicative
identity.

(ix) Distributivity of scalar multiplication with respect to vector addition: a(u+ v) = au+ av.

(x) Distributivity of scalar multiplication with respect to addition of real numbers: (a + b)v =
av + bv.

Remark 6.2. The classical vector space to keep in mind is Euclidean space, Rn.

Remark 6.3. The set, R2, is a vector space over R under the following definitions for vector addition
and scalar multiplication:

x+ y := (x1 + y1, x2 + y2)

and
λx := (λx1, λx2),

where x = (x1, x2) ∈ R2, y = (y1, y2) ∈ R2, and λ ∈ R. It is tedious, but easy to check that this is
true by verifying items (i)–(x).
Similarly, the set, Rd, is a vector space with the same component-wise addition and scalar multipli-
cation rules. For example, you should be working with R3 as a vector space in your MTH 234 class
(if not yet, then soon).

In the case of subsets, many of these are automatically inherited from the overlying vector space.
The following definition and upcoming proposition elaborate on this idea.

Definition 6.4. If V is a vector space, and W ⊆ V is a subset of V , and W is a vector space with
respect to the operations in V , then W is called a subspace of V.



Proposition 6.5. If V is a vector space, and W ⊆ V is a non-empty subset, then W is a subspace
of V if it satisfies the following two properties:

1. Closure under addition: if u, v ∈ W , then u+ v ∈ W , and

2. Closure under scalar multiplication: if c is a scalar, and u ∈ W , then cu ∈ W .

Definition 6.6. If V and W are vector spaces over the reals, R, and L : V → W , then L is a linear
map (also called a linear function) if and only if L satisfies

i) Additivity: L(u+ v) = L(u) + L(v), for all u, v ∈ V , and

ii) Scalar multiplication: L(au) = aL(u), for all scalars a ∈ R, and u ∈ V .

Definition 6.7. Matrix-vector multiplication in R2 is defined for a matrix, A =

(
a b
c d

)
, and an

element, x ∈ R2, with x = (x1, x2). The formula which defines matrix multiplication is

Ax :=

(
a b
c d

)(
x1
x2

)
:= (ax1 + bx2, cx1 + dx2).

Here, we require that a, b, c, d ∈ R.

Proposition 6.8. If we define the space of all 2× 2 matrices

V =

{(
a b
c d

)
: a, b, c, d ∈ R

}
,

with the addition operation as(
a b
c d

)
+

(
e f
g h

)
=

(
a+ e b+ f
c+ g d+ h

)
,

and the scalar multiplication operation, for λ ∈ R, as

λ

(
a b
c d

)
=

(
λa λb
λc λd

)
,

then V is a vector space over R.
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