August 2025 Algebra I Qualifying Exam

Problem 1. Let F be an algebraically closed field, V a nonzero finite-dimensional vector space over F, and $T:V\to V$ a linear transformation.

- (a) Show that T is diagonalizable iff its minimal polynomial has no repeated roots. Hint: Use the Structure Theorem for finitely generated F[t]-modules.
- (b) Show that T is nilpotent iff its minimal polynomial is t^k , for some $k \in \mathbb{N}$.

Problem 2. Let $\mathrm{SL}_2(\mathbb{F}_p)$ be the group of 2×2 matrices with entries in the finite field \mathbb{F}_p and determinant equal to 1.

- (a) Find the size of $SL_2(\mathbb{F}_p)$.
- (b) Find a p-Sylow subgroup of $SL_2(\mathbb{F}_p)$.
- (c) How many p-Sylow subgroups are there in $SL_2(\mathbb{F}_p)$?

Problem 3. Let $\{1\} \to K \xrightarrow{i} G \xrightarrow{\pi} H \to \{1\}$ be a short exact sequence of finite groups. Show that if $P \subset G$ is a p-Sylow subgroup of G, then $\pi(P)$ is a p-Sylow subgroup of H.

Problem 4. Let R be a commutative ring, and let $f \in R$ be an element.

- (a) Show that the localization R_f is isomorphic to R[x]/(1-xf) as a ring.
- (b) Show that if f = g + n, where n is nilpotent, then R_f is isomorphic to R_q .

Problem 5. Consider \mathbb{Q} as a \mathbb{Z} -module.

- (a) State the definition of Noetherian R-module. Is \mathbb{Q} Noetherian? Justify your answer.
- (b) State the definition of a projective R-module. Is \mathbb{Q} projective? Justify your answer.

Problem 6. Let R be a commutative ring, and let $P \subset R$ be a prime ideal.

- (a) Show that if $I, J \subset R$ are ideals such that $I \cap J = P$, then I = P or J = P.
- (b) Show that R/P is an indecomposable R-module, meaning it is not isomorphic to a direct sum of (nonzero) R-modules.