Geometry Qualifying Examination

Aug. 22, 2024

Instructions: Solve 5 out of the 6 problems. You must justify all your claims either by direct arguments or by referring to well known and basic theorems. Indicate clearly which 5 problems you would like us to grade.

Problem 1. Let $GL(n, \mathbb{R}) = \{A : A \text{ is a real invertible } n \times n \text{ matrix}\}$ and let $O(n) = \{A : A \text{ is a real } n \times n \text{ matrix satisfying } AA^t = I\}$

- (a) Show that $GL(n, \mathbb{R})$ is a smooth manifold of dimension n^2 .
- (b) Show that O(n) is a smooth submanifold of $GL(n, \mathbb{R})$. What is its dimension? Prove your claim.
- (d) Find the tangent space at the identity of $GL(n, \mathbb{R})$ and O(n).

Problem 2. Let $F : \mathbb{R}^3 \to \mathbb{R}$ be defined by $F(x, y, z) = x^2 + 2xy + 4y^2 + z^4$.

- (1) Prove that the level set $\Sigma := F^{-1} \{1\}$ is a submanifold of \mathbb{R}^3 .
- (2) Is Σ compact? Prove your claim.
- (3) Find the critical points of the function f(x, y, z) = y on Σ .

Problem 3. Consider \mathbb{R}^4 with coordinates (x, y, z, w). Let $f : \mathbb{R}^2 \to \mathbb{R}^4$ be defined by $f(u, v) = (v, u, v^3, u^2 v)$. Define a 2-form on \mathbb{R}^4 by

 $\alpha = w^2 dy \wedge dz + y^3 dy \wedge dw - 2ywdz \wedge dw.$

- (1) compute $f^*\alpha$.
- (2) show $d\alpha = 0$.
- (3) Find a 1-form β on \mathbb{R}^4 such that $\alpha = d\beta$.

Problem 4.

- (1) What is an orientation on a finite dimensional real vector space V? If dim V = 3 and $\{e_1, e_2, e_3\}$ is a basis, determine if $[e_1, e_2, e_3]$ and $[e_3, -e_1, -e_2]$ determine the same orientation or not.
- (2) What does it mean for a manifold to be orientable? Prove that \mathbb{RP}^2 is not orientable.
- (3) Suppose f is a smooth function on \mathbb{R}^{n+1} with 0 as a regular value. Show that the zero set of f is an orientable submanifold of \mathbb{R}^{n+1} .

Problem 5. Let X be the vector field on \mathbb{R}^3 such that its flow Φ_t is the rotation which fixes x-axis and rotates in the yz-plane counterclockwise by t in radians. Similarly, Y is the vector field that generates rotations around the y-axis.

- (1) Find X, Y explicitly.
- (2) Compute [X, Y].
- (3) Determine the flow generated by [X, Y].

Problem 6. On $\mathbb{R}^3 - \{0\}$ consider the differential form

$$\omega = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}.$$

- (1) Show that ω is closed.
- (2) Let $\iota : \mathbb{S}^2 \to \mathbb{R}^3 \setminus \{0\}$ be the inclusion map. Show that $\iota^* \omega$ is an orientation form on \mathbb{S}^2 , i.e. it is nowhere zero.
- (3) Let $\Omega \subset \mathbb{R}^3$ be a bounded domain with smooth boundary s.t. 0 is contained in the interior of Ω . Show that $\int_{\partial\Omega} \omega = 4\pi$.