Geometry Qualifying Exam

August 2025

DIRECTIONS: **Do Problems 1–4**, and then **do two** of the remaining Problems 5–7.

Make clear which problem you do **NOT** want graded. All manifolds, functions, vector fields, etc. are assumed to be smooth.

Problem 1. Let S be the subset of \mathbb{R}^4 defined by the equations

$$\left\{ \begin{array}{l} x^4 + y^4 + z^4 + 3w^6 = 5 \\ x + y + z = 0 \end{array} \right.$$

- (a) Prove that S is a submanifold of \mathbb{R}^4 .
- (b) What is $\dim S$? Is S compact?

Problem 2. Let $T \subset \mathbb{R}^3$ be the solid tetrahedron with vertices (0,0,0),(1,0,0),(0,1,0) and (0,0,1). The orientation form $dx \wedge dy \wedge dz$ on T induces "outward normal" orientations on each of its faces. Using these orientations, evaluate

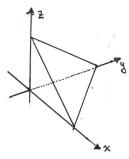
$$I \ = \ \int_S \ dx \wedge dy + dy \wedge dz$$

where $S = S_1 \cup S_2 \cup S_3$ is the union of

 $S_1 = \text{face in the } xy\text{-plane}$

 $S_2 = \text{face in the } xz\text{-plane}$

 $S_3 = \text{face in the } yz\text{-plane}$



Problem 3. Let $\Omega^p(M)$ denote the set of smooth p-forms on a smooth manifold M.

- (a) The exterior derivative d is a linear map $d: \Omega^p(M) \to \Omega^{p+1}(M)$ for each $p \ge 0$ such that: Fill in the blanks for (i)-(iii)
 - (i) $d^2 =$ ____
 - (ii) For $f \in C^{\infty}(M)$, the 1-form df is defined by $df(X) = \underline{\hspace{1cm}}$ for all vector fields X.
- (iii) $d(\omega \wedge \eta) = \underline{\hspace{1cm}} \forall \omega \in \Omega^p(M), \ \eta \in \Omega^q(M).$
- (iv) d is *local*: for each $p \in M$, the value of $d\omega$ at p depends only on the restriction of ω to an arbitrarily small neighborhood of p.

- (b) Show that Properties (i)–(iv) determine $d\omega$ for a 1-form ω . Hint: write ω in local coordinates.
- (c) Use induction to prove that properties (i)–(iv) uniquely determine $d\omega$ for all p-forms ω .

Problem 4. This problem is about the definition of vector fields as derivations. Complete the definitions:

- (a) A vector field is a derivation, i.e. linear map $X: C^{\infty}(M) \to C^{\infty}(M)$ such that
- (b) The bracket[X,Y] of vector fields X and Y is defined by _____
- (c) Prove that your answer to (b) is a vector field.
- (d) For a diffeomorphism $F: M \to M$, the pushforward of X is the vector field F_*X defined by

One can show (you don't have to) that

$$F_*[X,Y] = [F_*X, F_*Y] \tag{1}$$

- (e) Let F_t be the flow of a vector field Z. Replace F by F_t in (1) and differentiate with respect to t at t = 0 to obtain a formula involving Lie derivatives.
- (f) Relate your formula in (e) to the Jacobi Identity.

Do TWO of the remaining three problems. Make clear which ones you chose.

Problem 5. Let $f: M \to N$ be a submersion whose image is all of N. Prove that the pullback map $f^*: \Omega^p(N) \to \Omega^p(M)$ is an injection.

Problem 6. Let $f: S^2 \to M$ be a smooth map, where S^2 is regarded as the boundary of the unit ball B^3 in \mathbb{R}^3 . Suppose that there is a DeRham cohomology class $[\omega] \in H^2(M)$ with

$$f^*[\omega] \neq 0$$
 in $H^2(S^2)$.

Prove that f does not extend to a map $f: B^3 \to M$.

You may use the fact that integration of 2-forms defines an isomorphism $H^2(S^2) \stackrel{\cong}{\longrightarrow} \mathbb{R}$.

Problem 7. Let M be an n-dimensional manifold with boundary, and $f: \partial M \to \mathbb{R}$ a function on the boundary. Show that f extends to a smooth function on M, as follows.

- (a) (Local extension). Fix $p \in \partial M$. Show that there is a neighborhood U_p of p in M and a map $F_p: U_p \to \mathbb{R}$ with $F|_{\partial M \cap U_p} = f$.
- (b) (Global extension). Use (a) and a partition of unity to show that there is a smooth map $F: M \to \mathbb{R}$ such that $F|_{\partial M} = f$.