PDE I MTH 847 QUALIFYING EXAM August 23, 2024

Name:	Signature:
ramic	Digitature

Write clearly and coherently! Show all your work! This is a closed book exam, notes, electronic devices, cell phones, etc., can not be used. You can use a 4×6 index card. Read all problems through once before beginning your work. Problem 8 is optional for extra credit.

D 11	D
Problem	Points
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
Total:	

Problem 1. [10 points] Find the solution of the following initial value problem for the transport equation

$$u_t + b \cdot Du + cu = f$$
 in $\mathbf{R}^n \times (0, \infty)$, $u = g$ on $\mathbf{R}^n \times \{t = 0\}$.

Here $c \in \mathbf{R}$, $b \in \mathbf{R}^n$ are constants, $f(x,t) = e^{-2t}$, $g(x) = |x|^2$.

Problem 2. [10 points] Let $\mathbf{B}(0,1) = \{x \in \mathbf{R}^2 : |x| < 1\}$ be the open unit ball.

(a) Find the solution of the boundary value problem

$$\begin{cases} \Delta u = 0 & \text{in } \mathbf{B}(0,1) \\ u(x) = 2x_1^2 + 2x_1 + x_2^2 & \text{on } \partial \mathbf{B}(0,1). \end{cases}$$

- (b) Find the value u(0).
- (c) Find $\max\{u(x), x \in \overline{\mathbf{B}(0,1)}\}\$ and $\min\{u(x), x \in \overline{\mathbf{B}(0,1)}\}.$
- (d) Is there a point $x \in \mathbf{B}(0,1)$ such that u(x) = 0?

Problem 3. [10 points] Consider the initial value problem for the n=3 dimensional wave equation

$$u_{tt} - \Delta u = 0$$
, in $\mathbf{R}^3 \times (0, \infty)$, $u = 0$, $u_t = h$ on $\mathbf{R}^3 \times \{t = 0\}$.

The function $h \in C_c^{\infty}(\mathbf{R}^3)$ satisfies the conditions that $0 \le h(x) \le 1$ for all $x \in \mathbf{R}^3$, h(x) = 1 if $|x| \le 1$ and h(x) = 0 if $|x| \ge 2$. Calculate the values of u(x,t) at the points $(0,0,0,\frac{1}{4})$, (0,0,0,4), (0,7,0,5), and the value of $u_t(x,t)$ at $(0,0,0,\frac{1}{4})$.

Problem 4. [10 points] Solve the mixed initial-boundary value problem for the wave equation in one dimension

$$\begin{cases} u_{tt} = u_{xx}, & x > 0, \ t > 0, \\ u(x,0) = g(x), \ u_t(x,0) = 0, & x > 0, \\ u_t(0,t) = 2u_x(0,t) & t > 0, \end{cases}$$

where the function $g \in C^2(\mathbf{R}_+)$ vanishes near x = 0.

Problem 5. [10 points] Let U be a bounded open set in \mathbb{R}^n with C^1 boundary. The time T>0 is given Let $U_T=U\times (0,T]$, and $\Gamma_T=\overline{U_T}-U_T$. Consider the boundary value problem

 $\begin{cases} u_t - \Delta u + u^5 &= 0 & \text{in } U_T \\ u &= 0 & \text{on } \Gamma_T. \end{cases}$

Let $u \in C^{2,1}(\overline{U_T})$ be a solution of this boundary value problem. Prove that $u \equiv 0$ in $\overline{U_T}$.

Problem 6. [10 points] Let U be a bounded open set in \mathbf{R}^2 , and $a,b,c,d,e \in \mathbf{R}$. Suppose $u \in C^2(U)$ satisfies

$$au_{xx} + bu_{yy} + cu_x + du_y - (1 + e^2)u = 0$$

in U with positive constants a > 0, b > 0.

- (a) Show that u cannot have a positive maximum or a negative minimum in the interior of U.
- (b) Use this to show that if $u \in C^2(U) \cap C(\overline{U})$ is a solution of the boundary value problem

$$au_{xx} + bu_{yy} + cu_x + du_y - (1 + e^2)u = 0$$
 in U , $u = 0$ on ∂U ,

then u = 0.

Problem 7. [10 points] Let $f \in C(\mathbf{R}^n \times [0, \infty))$ and $g \in C(\mathbf{R}^n)$ be bounded functions. Prove that there is a bounded solution u of the nonhomogeneous heat equation

$$u_t - \Delta u = f$$
 in $\mathbf{R}^n \times (0, \infty)$, $u(x, 0) = g(x)$ on \mathbf{R}^n

if $|f(x,t)| \leq \frac{1}{1+t^4}$ for all $(x,t) \in \mathbf{R}^n \times [0,\infty)$. Use Duhamel's principle.

Problem 8. [10 points] Problem 8 is optional for extra credit.

Use the method of characteristics to solve the first order equation

$$(u_{x_1})^2 + 2x_2^2 u_{x_2} = 2, \quad (x_1, x_2) \in \mathbf{R}^2$$

with the condition

$$u(x_1,1) = x_1^2, \ x_1 \in \mathbf{R}.$$