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Euler and the Calculus of Variations

Leonhard Euler (1707-1783)

1744: Methodus Inveniendi

Lineas Curvas Maximi Min-

imive Proprietate Gaudentes

sive Solutio Problematis

Isoperimetrici Latissimo

Sensu Accepti

(A method for finding curved lines enjoying properties

of maximum or minimum, or solution of isoperimetric

problems in the broadest accepted sense)
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Euler and the Calculus of Variations

Question: given a function Z , find a minimum/maximum of

y 7→
∫

Z (x , y(x), y ′(x))dx .

E.g. Find a plane curve between two points along which a

particle descends in the shortest time under the influence of

gravity

Remark: In solving the brachystochrone problem, Euler used a

simple instance of the Lagrange multiplier method.
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Euler and the Calculus of Variations

Giuseppe Luigi Lagrangia

(1736-1813)

In 1755, the 19-year-old Lagrange

wrote Euler a brief letter to which

he attached a mathematical ap-

pendix with the revolutionary tech-

nique of variations.

Alessio Figalli (ETH Zürich) Stability in geom. & funct. ineq.



Euler and the Calculus of Variations

Euler said:

“Even though the author of this had meditated a long time and

revealed to friends his desire, yet the glory of first discovery

was reserved to the very penetrating geometer of Turin La

Grange, who having used analysis alone, has clearly attained

the very same solution which author had deduced by

geometrical considerations.”

Euler dropped his method, embraced that of Lagrange, and

renamed the subject Calculus of Variations.
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The Calculus of Variations

Fundamental problem in the Calculus of Variations: find

minima/maxima of functionals.

Two (by-now) classical examples:

• Isoperimetric inequalities

• Brunn-Minkowski inequality

Alessio Figalli (ETH Zürich) Stability in geom. & funct. ineq.



The Calculus of Variations

Basic question:

Find/characterize the minimizers.

Next natural question:

Are minimizers stable?

That is, if a function/set almost attains equality, is it close to one

of the minimizers?
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Overview of the talk

1 Stability for isoperimetric inequalities

2 Stability for the Brunn-Minkowski inequality
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Part 1: Isoperimetric inequalities
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Isoperimetric inequalities and stability

Classical isoperimetric inequality: For any bounded smooth

set E ⊂ Rn, the perimeter P(E) controls the volume |E |

P(E) ≥ n|B1|1/n|E |(n−1)/n

Moreover, equality holds if and only if E is a ball.

Stability question: If E is “almost a minimizer”, does this imply

that E is close to a ball, if possible in some quantitative way?
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Isoperimetric deficit of E :

δ(E) :=
P(E)

n|B1|1/n|E |(n−1)/n − 1 .

• δ(E) ≥ 0

• δ(E) = 0 ⇔ E is a ball

Asymmetry index of E :

A(E) := inf
x

{
|E∆(Br (x))|

|E |
: |Br | = |E |

}
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Question: can we find positive constants C = C(n) and

α = α(n) such that

A(E) ≤ C δ(E)α ?

Remark: by testing the above inequality on a sequence of

ellipsoids converging to B1, we get α ≤ 1/2.
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Question: can we find positive constants C = C(n) and

α = α(n) such that

A(E) ≤ C δ(E)α ?

Remark: by testing the above inequality on a sequence of

ellipsoids converging to B1, we get α ≤ 1/2.

This is actually the sharp result:

Theorem (Fusco-Maggi-Pratelli 2008, F.-Maggi-Pratelli 2010,

Cicalese-Leonardi 2012)

The stability result holds with α = 1/2.
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Knothe-Gromov’s proof of the isoperimetric inequality

Given E smooth and bounded, consider the probability

densities

f (x) :=
χE(x)
|E |

, g(y) :=
χB1(y)
|B1|

.

By Optimal Transportation Theory, there exists φ : Rn → R
convex such that T := ∇φ sends f onto g.
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Properties of T :

1 |T | ≤ 1 in E (since T (E) ⊂ B1)

2 det(DT ) = |B1|/|E | (since T#f = g)

3 divT ≥ n
(
det(DT )

)1/n (wait for the next slide).

Then:

P(E) =

∫
∂E

1
(1)
≥
∫
∂E

|T | ≥
∫
∂E

T · νE

=

∫
E

divT
(3)
≥ n

∫
E
(det(DT ))1/n (2)

= n|B1|1/n|E |(n−1)/n.
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Proof of (3)

Since T = ∇φ with φ convex, the eigenvalues λ1, . . . , λn of D2φ

are non-negative.

Hence:

divT = ∆φ = n

(
1
n

n∑
i=1

λi

)
≥ n

(
n∏

i=1

λi

)1/n

= n
(
det(DT )

)1/n
,

where we used the arithmetic-geometric inequality.
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Strengths of this proof:

• It works also for more general perimeter-type functionals used

to model the surface energy of crystals.

• It is very robust.

In particular, by carefully making “quantitative” each inequality

one can prove the desired stability result (F.-Maggi-Pratelli).
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Part 2: The Brunn-Minkowski inequality
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Semisum of sets

Given t ∈ (0,1), and A ⊂ Rn a Borel set with |A| > 0, define

tA + (1 − t)A :=
{

ta + (1 − t)a′ : a,a′ ∈ A
}
.

Note that tA + (1 − t)A ⊃ A, therefore

|tA + (1 − t)A| ≥ |A|.

What about the equality case?
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Equality holds iff A is “convex”.

More precisely, equality holds iff

|co(A) \ A| = 0,

where co(A) denote the convex hull of A.
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The Brunn-Minkowski inequality

This is a particular case of a more general inequality: the

Brunn-Minkowski inequality.

Given A,B ⊂ Rn Borel with |A|, |B| > 0, define

tA + (1 − t)B := {ta + (1 − t)b : a ∈ A, b ∈ B} .

Then

|tA + (1 − t)B|1/n ≥ t |A|1/n + (1 − t)|B|1/n.
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Equality holds iff A and B are “homothetic convex sets”:

there exist α, β > 0, v ,w ∈ Rn, and K ⊂ Rn convex, such that

A ⊂ αK + v , |(αK + v) \ A| = 0,

B ⊂ βK + w , |(βK + w) \ B| = 0.
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The BM inequality has applications in:

- convex geometry;

- analysis;

- statistics,

- information theory;

- etc.

From the analytic side, the following chain of implications holds:

BM ⇒ Isop. ineq. ⇒

⇒ Sobolev ⇒ Gagliardo − Nirenberg.
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The stability question

Up to rescaling, we can assume |A| = |B| = 1.

Also, up to exchanging A and B, we can assume t ∈ (0,1/2].

Then BM tells us

|tA + (1 − t)B| ≥ 1

Assume that

|tA + (1 − t)B| − 1 =: δt(A,B) ≪ 1

Question 1: Is it true that both A and B are almost convex, and

that actually they are close to the same convex set?

Question 2: And is it possible to have an explicit information

about the dependence on the parameter δt?
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This stability question has two statements in it:

(Convexity): The error in BM controls how far A and B are from

their convex hulls.

(Homothety): The error in BM controls the difference between

the shapes of A and B.
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We proceed by steps:

• The (Homothety) issue: assume that A and B are convex

and prove that A and B have almost the same shape.

• The (Convexity) issue: assume A = B and prove that A is

close to its convex hull co(A).

• Prove the general case.
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The homothety issue

Let A,B be bounded convex set with |A| = |B| = 1, and define a

distance between A and B:

d(A,B) := min
x∈Rn

|B∆(x + A)|.

Theorem (F.-Maggi-Pratelli, 2009)

Let t ∈ (0,1/2]. Then

d(A,B) ≤ Cn t−1/2δt(A,B)1/2.

Remark: the dependence t−1/2 and the exponent 1/2 are

optimal. Also, Cn is explicit. The proof is again via optimal

transport (McCann 1995 - FMP 2009).
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The convexity issue

The proof of quantitative stability for BM via optimal transport

works only if both A and B are convex, and a completely new

strategy is needed to address the (Convexity) issue.

The case n = 1, t = 1/2. Let |A| = 1, and define

δ1/2(A) :=
∣∣1

2A + 1
2A
∣∣− 1.

Question: does δ1/2(A) control |co(A) \ A|?
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Remark: in general, δ1/2(A) cannot control |co(A) \ A|.
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By Freiman, this is the only thing that can go wrong:

Theorem (Freiman, 1959)

Let A ⊂ R with |A| = 1, and assume δ1/2(A) < 1/2.

Then

|co(A) \ A| ≤ 2 δ1/2(A).

Remark: Freiman’s Theorem is about the structure of additive

subsets of Z, and it provides a sharp stability result in 1D also

for t ̸= 1/2 and A ̸= B.
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The case n > 1.

Let A ⊂ Rn with |A| = 1, t ∈ (0,1/2], and define

δt(A) := |tA + (1 − t)A| − 1.

Theorem (Christ, 2012)

If δt(A) → 0 then

|co(A) \ A| → 0.
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Theorem (F.-Jerison, 2013-2019; Van Hintum-Spink-Tiba,

2022)

Let t ∈ (0,1/2]. There are computable constants Cn, δt ,n > 0

such that the following holds:

If δt(A) ≤ δn,t , then

|co(A) \ A| ≤ Cnt−1δt(A).

Remark: the dependence t−1 and the exponent 1 are optimal.
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The general case

Theorem (F.-Jerison, 2014; F.-van Hintum-Tiba, 2024)

Let t ∈ (0,1/2]. There are computable constants Cn, δn,t > 0

such that the following holds:

If δt(A,B) ≤ δn,t then there exists a convex set K ⊂ Rn such

that, up to a translation,

A,B ⊂ K and |K \ A|+ |K \ B| ≤ Cnt−1/2 δt(A,B)1/2.

Remark: In FvHT 2024, we also prove that

|co(A) \ A|+ |co(B) \ B| ≤ Cn,tδt(A,B).
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Thanks for your attention!
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