Name:	PID:	
Section:	Instructor:	
	DO NOT WRITE BELOW THIS LINE. Go to the next page.	

Page	Problem	Score	Max Score
	1		5
1	2		5
1	3		5
	4		5
	5		5
	6		5
2	7		5
2	8		5
	9		5
	10		5
	11		10
3	12a		8
	12b		4
4	13		16
	14a		4
5	14b		10
	14c		6
6	15a		8
	15b		8
	16a		6
7	16b		6
	17		12
8	18		12
	19		12
9	20		12
<i>3</i>	21		16
Tota	al Score		200

ame:		PID:		
ection:	Instructor:			
READ THE FOLLOW	ING INSTRUCTIONS.			
	ur exam until told to do s	o.		
• No calculators, ce	ll phones or any other electron	nic devices can be used on this exam.		
• Clear your desk o	f everything excepts pens, pen	cils and erasers.		
• If you need scratc	h paper, use the back of the p	revious page.		
• Without fully ope	• Without fully opening the exam, check that you have pages 1 through 10.			
• Fill in your name,	• Fill in your name, etc. on the first page and on this page.			
		rly! Include enough steps for the grader to be able signs, etc. Include words to clarify your reasoning.		
	problems you know how to do n. Return to difficult problems	immediately. Do not spend too much time on any s later.		
• You will be given	exactly 120 minutes for this e	xam.		
I have read and understan	d the above instructions:			
I have read and understand the above instructions:		SIGNATURE		

SCORE:	
--------	--

Multiple Choice. Circle the best answer. No work needed. No partial credit available.

1. A parametric equation for the line through (1,2,3) and perpendicular to the plane z-x-y=5 is given by:

(a)
$$\mathbf{r}(t) = \langle t - 1, 2t - 1, 3t + 1 \rangle$$

(b)
$$\mathbf{r}(t) = \langle -1 - t, -2 - t, -t + 3 \rangle$$

(c)
$$\mathbf{r}(t) = \langle -t - 1, -2t - 1, -3t + 1 \rangle$$

(d)
$$\mathbf{r}(t) = \langle 1 - t, 2 - t, 3 + t \rangle \longleftarrow Answer$$

- (e) None of the above
- 2. Suppose $x^2 + 3xy = 7$. Which of the following is true?

(a)
$$\frac{dy}{dx} = \frac{3x}{2x + 3y}$$

(b)
$$\frac{dy}{dx} = \frac{2x + 3y}{3x}$$

(c)
$$\frac{dy}{dx} = -\frac{3y}{2x+3y}$$

(d)
$$\frac{dy}{dx} = -\frac{2x+3y}{3x} \leftarrow Answer$$

- (e) None of the above
- 3. Let $f = x^2 + 3xy$ where $x = -v + \sin u$ and $y = u + \sin v$. Which of the following is true?

(a)
$$\frac{\partial f}{\partial u} = (3u - 2v + 5\sin v)(\cos u) + (-3v + 3\sin u)$$

(b)
$$\frac{\partial f}{\partial u} = (3u - 2v + 2\sin u + 3\sin v)(\cos u) + (-3v + 3\sin u) \longleftarrow Answer$$

(c)
$$\frac{\partial f}{\partial u} = (-3u + 2v - 2\sin u - 3\sin v) + (-3v + 3\sin u)(\cos v)$$

(d)
$$\frac{\partial f}{\partial u} = 2(-v + \sin u) + 3(u + \sin v)$$

- (e) None of the above
- 4. The directional derivative of $f(x,y) = x^2(y-1) 2y^2$ at the point (2,0) in the direction of the vector $\mathbf{i} 2\mathbf{j}$ is given by:

1

(a)
$$\langle 2x(y-1), x^2 - 4y \rangle \cdot \frac{\langle 1, -2 \rangle}{\sqrt{5}}$$

(b)
$$\langle 2x(y-1), x^2 - 4y \rangle \cdot \frac{\langle 2, 0 \rangle}{\sqrt{4}}$$

(c)
$$\langle -4, 4 \rangle \cdot \frac{\langle 1, -2 \rangle}{\sqrt{5}} \longleftarrow Answer$$

(d)
$$\langle -6, 9 \rangle \cdot \frac{\langle 2, 0 \rangle}{\sqrt{4}}$$

(e) None of the above

Fill in the Blanks. No work needed. Only possible scores given are 0, 3, and 5.

- 5. Evaluate the limit if it exists. Write DNE if the limit does not exist. $\lim_{(x,y)\to(1,2)}\frac{4x^2-y^2}{2x-y}=\underline{4}$
- 6. Evaluate the limit if it exists. Write DNE if the limit does not exist. $\lim_{(x,y)\to(0,0)} \frac{4x^2+y^2}{2x^2-y^2} = \underline{\text{DNE}}$
- 7. If $\frac{d\mathbf{r}}{dt} = (3t^2 + 1)\mathbf{i} + (4t^3 + 1)\mathbf{j} \mathbf{k}$ and $\mathbf{r}(1) = -3\mathbf{i} + 2\mathbf{k}$ then $\mathbf{r}(t) = \underline{\langle t^3 + t 5, t^4 + t 2, -t + 3 \rangle}$
- 8. The integral $\int_0^1 \sqrt{4t^2 + e^{2t} + (\pi \cos(\pi t))^2} dt$ expresses the length of the curve $\mathbf{r}(t) = \langle 1 + t^2, e^t, \sin(\pi t) \rangle$ between the points (1, 1, 0) and (2, e, 0). (**Do not evaluate**)
- 9. $\frac{-4(x-2)+4(y-0)-1(z+4)}{z=x^2(y-1)-2y^2 \text{ at the point } (2,0,-4).}$ is an equation of the tangent plane to the surface
- $10. \text{ If } \int_0^2 \int_0^{\sqrt{4-x^2}} \int_0^3 f(x,y,z) \ dz \ dy \ dx = \int_0^3 \int_0^a \int_0^b f(x,y,z) \ dx \ dy \ dz \text{ then } a = \underline{2} \text{ and } b = \underline{\sqrt{4-y^2}}.$

Extra Work Space.

Solution. Solve the system of equations:

$$5+t=6-2s$$
$$4+t=3-s$$

To give us s=2 and t=-3. Plugging t=-3 into $L_1(t)$ we get

$$L_1(-3) = \langle 4 - 3, 5 - 3, 6 - 3 \rangle$$

= $\langle 1, 2, 3 \rangle$

Giving us x = 1, y = 2, and z = 3.

12. (8+4=12 points) Given the points A(1,1,1), B(2,1,0), and C(0,2,3).

(a) Find an equation of a plane that through the points A, B, and C.

Solution. Consider the vectors $\overrightarrow{AB} = \langle 1, 0, -1 \rangle$ and $\overrightarrow{AC} = \langle -1, 1, 2 \rangle$. Then

$$\mathbf{n} = \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & -1 \\ -1 & 1 & 2 \end{vmatrix}$$
$$= (0+1)\mathbf{i} - (2-1)\mathbf{j} + (1-0)\mathbf{k}$$
$$= \langle 1, -1, 1 \rangle$$

So we get $(x-1) - (y-1) + (z-1) = 0 \implies \boxed{z = 1 - x + y}$

(b) Find the area of triangle ABC.

Solution. Using the work we did in (a) we know

Area of triangle ABC =
$$\frac{1}{2}|\langle 1, -1, 1 \rangle|$$

= $\frac{1}{2}\sqrt{3} = \boxed{\frac{\sqrt{3}}{2}}$

13. (16 points) Find and classify (max, min or saddle point) the critical points of $f(x,y) = 1 + 6x^2 + 6y^2 - 3x^2y - y^3$. (Hint: There are four.)

Solution. Taking partial derivatives we get $f_x = 12x - 6xy = 6x(2-y)$ and $f_y = 12y - 3x^2 - 3y^2 = -3(y^2 - 4y + x^2)$. Since these are polynomials they are never undefined so we get critical points when 0 = 6x(2-y) and $0 = y^2 - 4y + x^2$

$$f_x = 0 \implies x = 0 \implies y = 0$$

or $y = 4$
or $y = 2 \implies x = 2$
or $x = -2$

giving us the critical points (0,0), (0,4), (2,2), (-2,2). Now we calculate second derivatives to classify them:

$$f_{xx} = 12 - 6y$$
 $f_{yy} = 12 - 6y$ $f_{xy} = -6x$

So we get:

$$D(0,0) = (12)(12) - (0)^2 = 144 > 0$$

 $f_{xx}(0,0) = 12$ $\Longrightarrow (0,0) \text{ is a local min}$

$$D(0,4) = (-12)(-12) - (0)^2 = 144 > 0$$

 $f_{xx}(0,4) = -12$ \Longrightarrow $(0,4)$ is a local max

$$D(2,2) = (0)(0) - (-12)^2 = -144 < 0$$
 $\implies (2,2) \text{ is a saddle pt}$

$$D(-2,2) = (0)(0) - (12)^2 = -144 < 0$$
 \Longrightarrow $(2,-2)$ is a saddle pt

- 14. (4+10+6=20 points) Let $\mathbf{F} = (2x+y+yz, x+xz, xy+1)$.
 - (a) Show that $\operatorname{curl}(\mathbf{F}) = \mathbf{0}$.

Solution.

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2x + y + yz & x + xz & xy + 1 \end{vmatrix} = (x - x)\mathbf{i} - (y - y)\mathbf{j} + ((1 + z) - (1 + z))\mathbf{k}$$
$$= \langle 0, 0, 0 \rangle$$

(b) Find a potential function f such that $\nabla f = \mathbf{F}$.

Solution.

$$\int f_x \, dx = \int 2x + y + yz \, dx$$

$$f = x^2 + xy + xyz + g(y, z) \qquad \qquad \text{(integrate } (\star))$$

$$f_y = x + xz + g_y(y, z) \qquad \qquad \text{(take partial derivative)}$$

$$x + xz = x + xz + g_y(y, z) \qquad \qquad \text{(Plug in } Q \text{ for } f_y)$$

$$0 = g_y(y, z) \qquad \qquad \text{(algebra)}$$

$$g(z) = g(y, z) \qquad \qquad \text{(integrate)}$$

$$f = x^2 + xy + xyz + g(z) \qquad \qquad \text{(substitute into } (\star))$$

$$f_z = xy + g_z(z) \qquad \qquad \text{(take partial derivative)}$$

$$xy + 1 = xy + g_z(z) \qquad \qquad \text{(Plug in } R \text{ for } f_z)$$

$$1 = g_z(z) \qquad \qquad \text{(Algebra)}$$

$$z + K = g(z) \qquad \qquad \text{(integrate)}$$

$$f = x^2 + xy + xyz + z + K \qquad \qquad \text{(substitute into } (\star))$$

(c) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is a curve from the point (0,0,0) to the point (2,1,1).

Solution.
$$\int_C \mathbf{F} \cdot d\mathbf{r} = f(2,1,1) - f(0,0,0) = (4+2+2+1) - (0) = \boxed{9}.$$

15. (8+8=16 points) Evaluate the integrals

(a)
$$\int_0^1 \int_x^1 4e^{(x/y)} dy dx$$
.

Solution. This can not be so easily integrated. Lets switch the limits of integration.

Sketch a mini picture $(0,0) \longrightarrow (0,0)$

$$\int_0^1 \int_x^1 4e^{(x/y)} \, dy \, dx = \int_0^1 \int_0^y 4e^{(x/y)} \, dx \, dy$$

$$= \int_0^1 \left[4ye^{(x/y)} \right]_0^y \, dy$$

$$= \int_0^1 \left[4ye^1 - 4y \right] \, dy$$

$$= \int_0^1 4y(e-1) \, dy$$

$$= \left[2y^2(e-1) \right]_0^1 = \boxed{2(e-1)}$$

(b)
$$\int_0^3 \int_0^{\sqrt{9-x^2}} 2\cos(x^2 + y^2) dy dx$$
.

Solution. Polar coordinates for the win.

Sketch a mini picture
$$\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} 2\cos(x^{2}+y^{2}) \ dy \ dx = \int_{0}^{\pi/2} \int_{0}^{3} 2\cos(r^{2}) \ r \ dr \ d\theta$$

$$= \frac{\pi}{2} \int_{0}^{3} 2r \cos(r^{2}) \ dr$$

$$= \frac{\pi}{2} \left[\sin(r^{2}) \right]_{0}^{3}$$

$$= \left[\frac{\pi}{2} \sin(9) \right]$$

- 16. (6+6=12 points)
 - (a) Express $(x-2)^2 + y^2 = 4$ in terms of polar coordinates. Solve for r. Simplify as much as possible.

Solution.

$$(r\cos\theta-2)^2+(r\sin\theta)^2=4$$

$$r^2\cos^2\theta-4r\cos\theta+4+r^2\sin^2\theta=4$$

$$r^2-4r\cos\theta=0$$

$$r(r-4\cos\theta)=0$$

$$r=\boxed{4\cos\theta} \qquad (r=0\text{ is only a dot, not a circle. Extraneous.})$$

(b) Express (DO NOT EVALUATE) a triple integral in cylindrical coordinates for the volume of the portion of the sphere $x^2 + y^2 + z^2 = 16$ contained within the cylinder $(x-2)^2 + y^2 = 4$.

Solution. The surface we enter our region of integration through is $z = -\sqrt{16 - x^2 - y^2} = -\sqrt{16 - r^2}$ and we exit through $z = \sqrt{16 - x^2 - y^2} = \sqrt{16 - r^2}$. Finally we should note that a possible domain of $r = 4\cos\theta$ to cover the circle once is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. So we get.

$$\begin{split} \iiint_E 1 \; dV &= \int \int \int r \; dz \; dr \; d\theta \\ &= \int_{-\pi/2}^{\pi/2} \int_0^{4\cos\theta} \int_{-\sqrt{16-r^2}}^{\sqrt{16-r^2}} r \; dz \; dr \; d\theta \end{split}$$

17. (12 points) Evaluate the integral $\int_{-3}^{0} \int_{0}^{\sqrt{9-y^2}} \int_{0}^{\sqrt{9-x^2-y^2}} (4z) dz dx dy$ in spherical coordinates.

Solution.

Sketch a mini picture in

2D then 3D

These should suffice to give us:

$$\int_{-3}^{0} \int_{0}^{\sqrt{9-y^2}} \int_{0}^{\sqrt{9-x^2-y^2}} (4z) \, dz \, dx \, dy = \iiint (4\rho \cos \phi) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

$$= \int_{-\pi/2}^{0} \int_{0}^{\pi/2} \int_{0}^{3} 4\rho^3 \sin \phi \cos \phi \, d\rho \, d\phi \, d\theta$$

$$= \frac{\pi}{2} \int_{0}^{\pi/2} \left[\rho^4 \sin \phi \cos \phi \right]_{0}^{3} \, d\phi$$

$$= \frac{\pi}{2} \int_{0}^{\pi/2} \left[81 \sin \phi \cos \phi \right] \, d\phi$$

$$= \frac{\pi}{4} \left[81 \sin^2 \phi \right]_{0}^{\pi/2}$$

$$= \left[\frac{\pi}{4} \left[81 \right] \right]$$

18. (12 points) Find the work done by the field $\mathbf{F} = y\mathbf{i} - x\mathbf{j} + z^2\mathbf{k}$ over the path $\mathbf{r}(t) = \cos t\mathbf{i} + \sin t\mathbf{j} + t\mathbf{k}$, $0 \le t \le \frac{\pi}{2}$.

Solution.

$$\int_0^{\pi/2} \langle y, -x, z^2 \rangle \cdot d\mathbf{r} = \int_0^{\pi/2} \langle y, -x, z^2 \rangle \cdot \langle -\sin t, \cos t, 1 \rangle dt$$

$$= \int_0^{\pi/2} \langle \sin t, -\cos t, t^2 \rangle \cdot \langle -\sin t, \cos t, 1 \rangle dt$$

$$= \int_0^{\pi/2} -\sin^2 t - \cos^2 t + t^2 dt$$

$$= \int_0^{\pi/2} t^2 - 1 dt$$

$$= \left[\frac{t^3}{3} - t \right]_0^{\pi/2} = \frac{\pi^3}{24} - \frac{\pi}{2}$$

19. (12 points) Use Green's Theorem to evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \left\langle 6y + \frac{\sin^2 x}{10 + x^4}, 3y^9 \cos(y^2) - 4x \right\rangle$ and C is the positively oriented triangle shown below.

Solution.

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \left\langle 6y + \frac{\sin^{2} x}{10 + x^{4}}, 3y^{9} \cos(y^{2}) - 4x \right\rangle \cdot d\mathbf{r}$$

$$= \iint_{D} (-4 - 6) \ dA$$

$$= -10 \iint_{D} \ dA$$

$$= -10 \left[\frac{1}{2} (2)(2) \right] = \boxed{-20}$$

20. (12 points) Find the surface area of the paraboloid $z = 5 - 2x^2 - 2y^2$ that lies above the plane z = -13.

Solution. These words give us $f(x,y) = 5 - 2x^2 - 2y^2$ and

$$5 - 2x^2 - 2y^2 \ge -13$$
$$9 \ge x^2 + y^2$$

Giving us $D = \{(x,y) \mid 9 \ge x^2 + y^2\}$. Using the surface area formula we get:

$$\iint_{D} \sqrt{1 + [f_{x}]^{2} + [f_{y}]^{2}} \ dA = \iint_{D} \sqrt{1 + 16x^{2} + 16y^{2}} \ dA$$

$$= \int_{0}^{2\pi} \int_{0}^{3} \sqrt{1 + 16r^{2}} \ r \ dr \ d\theta$$

$$= 2\pi \int_{0}^{3} \frac{32r}{32} \sqrt{1 + 16r^{2}} \ dr$$

$$= 2\pi \left[\frac{2}{3(32)} (1 + 16r^{2})^{3/2} \right]_{0}^{3}$$

$$= \frac{4\pi}{96} \left[(1 + 16(9))^{3/2} - 1 \right] = \left[\frac{\pi}{24} \left[(145)^{3/2} - 1 \right] \right]$$

21. (16 points). Let $\mathbf{F} = (xy^2 - z)\mathbf{i} + (12x + yz^2)\mathbf{j} + (zx^2 - \sin x)\mathbf{k}$ and let S be the sphere $x^2 + y^2 + z^2 = 4$. Use the Divergence Theorem to find evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$.

Solution.

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} \operatorname{div} \mathbf{F} \, dV$$

$$= \iiint_{E} (y^{2} + z^{2} + x^{2}) \, dV$$

$$= \iiint_{E} (\rho^{2}) \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2} (\rho^{2}) \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta$$

$$= 2\pi \int_{0}^{\pi} \left[\frac{\rho^{5}}{5} \sin \phi \right]_{0}^{2} \, d\phi$$

$$= \frac{64\pi}{5} \left[-\cos \phi \right]_{0}^{\pi} = \boxed{\frac{128\pi}{5}}$$