1. Let \(n \) be a positive integer. Prove that the sum of the digits of \(1981^n \) is at least 19.

2. Let \(A \) be a square matrix with real entries such that \(A^3 = A + I \). Show that \(\det A > 0 \).

3. You have a chess board of size \(10 \times 10 \). Prove that there are no more than \(2^{50} \) ways to tile the board with dominoes (i.e., rectangles of size \(2 \times 2 \)).

4. Let \(f \) be a real continuous function on \([-1, 1] \) such that \(|f(t)| \leq 1 \) for \(t \in [-1, 1] \), \(\int_{-1}^{1} f(t) \, dt = 1 \), and \(\int_{-1}^{1} f^2(t) \, dt = 1 \). Show that
 (a) \(\int_{-1}^{1} f^3(t) \, dt \geq 0 \);
 (b) \(\int_{-1}^{1} f^3(t) \, dt \geq 1/3 \).

5. A part of a square of size \(1 \times 1 \) is painted in red. It is known that no two red points of the square are at the distance \(\varepsilon \) (where \(\varepsilon > 0 \)). Prove that
 (a) the area of the red part of the square is at most \(\frac{1}{3}(1 + \varepsilon)^2 \).
 (b) the area of the red part of the square is at most \(\frac{2}{7}(1 + \sqrt{3}\varepsilon)^2 \).