# HERZOG MATH COMPETITION 

November 13, 2011

Note: The grading will be similar to the grading of Putnam. This means you must explain your answers/steps as much as possible. An answer without any explanation will receive no credit.

1. While working on a problem, a student didn't notice the multiplication sign between two three-digit numbers, so she ended up writing a six digit number instead. The six digit number was seven times bigger than the product of the two three-digit numbers. Can you find the two three-digit numbers?
2. Define polynomials $f_{n}(x)$ for $n \geq 0$ by $f_{0}(x)=1, f_{n}(0)=0$ for $n \geq 1$, and

$$
\frac{d}{d x} f_{n+1}(x)=(n+1) f_{n}(x+1)
$$

for $n \geq 0$. Find, with proof, the explicit factorization of $f_{100}(1)$ into powers of distinct primes.
3. Evaluate

$$
\int_{2}^{4} \frac{\sqrt{\ln (9-x)} d x}{\sqrt{\ln (9-x)}+\sqrt{\ln (x+3)}}
$$

4. 1981 points lie inside a cube of side length 9 . Prove that there are two points within a distance less than 1.
5. Prove that there are no primes in the infinite sequence of integers

$$
10001,100010001,1000100010001, \cdots \ldots
$$

6. The triangle $A B C$ is inscribed in a circle. The interior bisectors of the angles $A, B$ anc $C$ meet the circle again at $A^{\prime}, B^{\prime}$ and $C^{\prime}$ respectively. Prove that the area of triangle $A^{\prime} B^{\prime} C^{\prime}$ is greater than or equal to the area of the triangle $A B C$.
