Department of Mathematics

Student Algebra & Combinatorics

  •  Ioannis Zachos, Michigan State
  •  Gröbner basis and the Ideal Membership problem
  •  09/09/2019
  •  4:30 PM - 5:30 PM
  •  C304 Wells Hall

We know from the Hilbert Basis Theorem that any ideal in a polynomial ring over a field is finitely generated. However, there remains question as to the best generators to choose to describe the ideal. Are there generators for a polynomial ideal $I$ that make it easy to see if a given polynomial $f$ belongs to $I$? For instance, does $2x^2z^2+2xyz^2+2xz^3+z^3-1$ belong to $I=(x+y+z, xy+xz+yz, xyz−1)$? Deciding if a polynomial is in an ideal is called the Ideal Membership Problem. In polynomial rings of one variable, we use long division of polynomials to solve this problem. There is a corresponding algorithm for $K[x_1,\ldots, x_n]$, but because there are multiple variables and multiple divisors, the remainder of the division is not unique. Hence a remainder of $0$ is a sufficient condition, but not a necessary condition, to determine ideal membership. However, if we choose the correct divisors, then the remainder is unique regardless of the order of the divisors. These divisors are called a Gröbner basis. In our talk we will define the Gröbner basis and see how it solves the Ideal Membership Problem.



Department of Mathematics
Michigan State University
619 Red Cedar Road
C212 Wells Hall
East Lansing, MI 48824

Phone: (517) 353-0844
Fax: (517) 432-1562

College of Natural Science