Title: Arithmetic intersection theory and Arakelov's Hodge Index Theorem

Date: 11/04/2019

Time: 4:30 PM - 5:30 PM

Place: C304 Wells Hall

The famous Mordell-Weil conjecture was first proved by Faltings in a classical way, then Vojta gave an alternative proof using arithmetic Arakelov geometry, which is one big motivation for developing Arakelov theory into a mature tool. In this talk I will introduce Neron functions and divisors, which is an arithmetic approach to define divisors rather than classical algebraic geometry. We shall also cover arithmetic chow groups and the arithmetic intersection number. In the end I will present Neron symbols and use it to give a sketch proof of Arakelov’s Hodge Index Theorem.