Title: Variations of cops and robbers on infinite graphs

Date: 11/06/2019

Time: 3:00 PM - 3:50 PM

Place: C304 Wells Hall

The game of cops and robbers is a two player pursuit and evasion game played on a discrete graph G. We study a variation of the classical rules which leads to a different invariant when G is an infinite graph. In this variation, called "weak cops and robbers," the cops win by preventing the robber from visiting any vertex infinitely often. In the classical game, if G is connected and planar, then the cops can always win if there are at least three cops. We prove that this is true in the weak game if G is a locally finite plane graph with no vertex accumulation points.