Department of Mathematics

Colloquium

  •  Tetiana Shcherbyna, Princeton University
  •  Random matrix theory and supersymmetry techniques
  •  01/10/2020
  •  4:10 PM - 5:00 PM
  •  C304 Wells Hall

Starting from the works of Erdos, Yau, Schlein with coauthors, the significant progress in understanding the universal behavior of many random graph and random matrix models were achieved. However for the random matrices with a spacial structure our understanding is still very limited. In this talk I am going to overview applications of another approach to the study of the local eigenvalues statistics in random matrix theory based on so-called supersymmetry techniques (SUSY) . SUSY approach is based on the representation of the determinant as an integral over the Grassmann (anticommuting) variables. Combining this representation with the representation of an inverse determinant as an integral over the Gaussian complex field, SUSY allows to obtain an integral representation for the main spectral characteristics of random matrices such as limiting density, correlation functions, the resolvent's elements, etc. This method is widely (and successfully) used in the physics literature and is potentially very powerful but the rigorous control of the integral representations, which can be obtained by this method, is quite difficult, and it requires powerful analytic and statistical mechanics tools. In this talk we will discuss some recent progress in application of SUSY to the analysis of local spectral characteristics of the prominent ensemble of random band matrices, i.e. random matrices whose entries become negligible if their distance from the main diagonal exceeds a certain parameter called the band width.

 

Contact

Department of Mathematics
Michigan State University
619 Red Cedar Road
C212 Wells Hall
East Lansing, MI 48824

Phone: (517) 353-0844
Fax: (517) 432-1562

College of Natural Science