- Thang Le, Georgia Tech
- Quantum trace map for $SL_n$ skein algebras of surfaces
- 02/23/2021
- 2:50 PM - 3:40 PM
- Online (virtual meeting)
(Virtual Meeting Link)
- Honghao Gao (gaohongh@msu.edu)
For a punctured surface there are two quantizations of the $SL_n$ character variety. The first quantization is the $SL_n$ skein algebra, and the second one is the quantization of the higher Teichmuller space.
When $n=2$ Bonahon and Wong showed that there is an algebra homomorphism, called the quantum trace, from the first quantized algebra to the second one. We show for general n a similar quantum trace map exists.
The construction of the $SL_n$ quantum trace is based on the theory of stated $SL_n$ skein algebra, developed in a joint work with A. Sikora, and a work of Chekhov and Shapiro.