Department of Mathematics

Analysis and PDE

  •  Peter Yuditskii, Johannes Kepler University Linz
  •  The Deift conjecture
  •  03/31/2021
  •  4:00 PM - 5:00 PM
  •  Online (virtual meeting) (Virtual Meeting Link)
  •  Dapeng Zhan (zhan@msu.edu)

At his 60th birthday conference in 2005, Percy Deift was asked to present a list of unsolved problems. This list was updated ten years later, on his 70th birthday conference. As the number one unsolved problem in both lists we still have the following conjecture. Problem 1.1 (KdV with almost periodic initial data). Consider the Korteweg–de Vries (KdV) equation $$u_t +uu_x +u_{xxx} =0 $$ with initial data $$u(x,t=0)=q(x),\quad x\in\mathbb{R}.$$ In the 1970’s, McKean and Trubowitz proved the remarkable result that if the initial data $q(x)$ is periodic, $q(x + T ) = q(x)$ for some $T > 0$, then the solution $u(x, t)$ is almost periodic in time. This result leads to the following natural conjecture: The same is true if $q(x)$ is almost periodic, i.e., if the initial data is almost periodic in space, the solution evolves almost periodically in time. Zoom Link: https://msu.zoom.us/j/94297154840 Passcode: the same as the last time

 

Contact

Department of Mathematics
Michigan State University
619 Red Cedar Road
C212 Wells Hall
East Lansing, MI 48824

Phone: (517) 353-0844
Fax: (517) 432-1562

College of Natural Science