Department of Mathematics


  •  Brian Lawrence, UCLA
  •  Sparsity of Integral Points on Moduli Spaces of Varieties (in person!)
  •  04/20/2022
  •  4:00 PM - 5:00 PM
  •  C304 Wells Hall
  •  Preston Wake (

Interesting moduli spaces don't have many integral points. More precisely, if X is a variety over a number field, admitting a variation of Hodge structure whose associate period map is injective, then the number of S-integral points on X of height at most $H$ grows more slowly than $H^{\epsilon}$, for any positive $\epsilon$. This is a sort of weak generalization of the Shafarevich conjecture; it is a consequence of a point-counting theorem of Broberg, and the largeness of the fundamental group of X. Joint with Ellenberg and Venkatesh.



Department of Mathematics
Michigan State University
619 Red Cedar Road
C212 Wells Hall
East Lansing, MI 48824

Phone: (517) 353-0844
Fax: (517) 432-1562

College of Natural Science