Department of Mathematics

Algebra

  •  Qingjing Chen, University of California Santa Barbara
  •  Kuznetsov components of some Fano fourfolds
  •  11/07/2022
  •  3:00 PM - 4:00 PM
  •  C304 Wells Hall
  •  Laure Flapan (flapanla@msu.edu)

Kuznetsov component A_X of an algebraic variety X is defined to be the right orthogonal of some exceptional collection in the bounded derived category of X. When X is a cubic fourfold or Gushel Mukai fourfold, A_X is a noncommutative K3 surface in the sense that its Serre functor is given by "shifting by 2". Whether or not A_X is equivalent to the bounded derived category of an actual K3 surface is believed to be related to the rationality of the variety X , therefore it has received extensive studies. Yet not many studies seem to answer the question of when the Kuznetsov component of a cubic fourfold is equivalent to that of a Gushel Mukai fourfold, we believe that the answer of this question should be interesting for it will give a part of "Torelli theorem for noncommutative K3 surfaces". In this talk, I will present some partial results which address the previous question.

 

Contact

Department of Mathematics
Michigan State University
619 Red Cedar Road
C212 Wells Hall
East Lansing, MI 48824

Phone: (517) 353-0844
Fax: (517) 432-1562

College of Natural Science