Department of Mathematics

Geometry and Topology

  •  Mark Greenfield, University of Michigan
  •  Thurston's metric on Teichmueller spaces of flat n-tori
  •  09/07/2017
  •  2:00 PM - 3:00 PM
  •  C304 Wells Hall

Several interesting metrics have been defined for Teichmueller spaces of hyperbolic surfaces. However, analogous metrics on the Teichmueller space of flat n-tori have not been as well studied. After reviewing some background on Teichmueller theory, we will define an analog of Thurston's metric for these spaces. We find that in dimension n=2, it agrees with the hyperbolic metric. In particular, this gives a new way to realize the hyperbolic plane as the moduli space of marked flat tori. Time permitting, we will describe the corresponding situation in dimension n>2. This work is joint with Lizhen Ji.



Department of Mathematics
Michigan State University
619 Red Cedar Road
C212 Wells Hall
East Lansing, MI 48824

Phone: (517) 353-0844
Fax: (517) 432-1562

College of Natural Science