Title: Almost alternating, Turaev genus one, and semi-adequate links

Date: 03/22/2018

Time: 2:00 PM - 3:00 PM

Place: C304 Wells Hall

Speaker: Adam Lowrance, Vassar College

A link is almost alternating if it is non-alternating and has a diagram such that one crossing change transforms it into an alternating diagram. Turaev genus one links are a certain generalization of non-alternating Montesinos links. A link is semi-adequate if it has a diagram where at least one of the all-A or all-B Kauffman state graphs is loopless. In this talk, we discuss the Jones polynomial and Khovanov homology of links in these three classes, and we discuss open problems about the relationships between the three classes.