Department of Mathematics

Colloquium

  •  Bordered knot invariants
  •  03/22/2017
  •  4:10 PM - 5:00 PM
  •  C304 Wells Hall
  •  Peter Ozsvath, Princeton

I will describe a bordered construction of knot Floer homology, defined as a computable, combinatorial knot invariant. Generators correspond to Kauffman states, and the differentials have an algebraic interpretation in terms of a certain derived tensor product. I will also explain how methods from bordered Floer homology prove that this invariant indeed computes the holomorphically defined knot Floer homology. This is joint work with Zoltan Szabo.

 

Contact

Department of Mathematics
Michigan State University
619 Red Cedar Road
C212 Wells Hall
East Lansing, MI 48824

Phone: (517) 353-0844
Fax: (517) 432-1562

College of Natural Science