3.3 Polynomial and Other Functions

In this section you will learn to:

- understand characteristics of polynomial functions
- find intervals on which a function is increasing, decreasing, or constant
- find the relative maximum or minimum of a function
- determine whether a function is even, odd, or neither
- graph and evaluate piecewise functions

A polynomial function of degree \(n \) is defined by

\[f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0, \]

where \(n \) is a nonnegative integer, and \(a_n, a_{n-1}, a_{n-2}, \ldots, a_2, a_1, a_0 \) are real numbers and \(a_n \neq 0 \).

\(a_n \) is called the leading coefficient.

\(a_0 \) is called the constant term.

The degree of the polynomial is \(n \)

Graphs of polynomials are smooth (rounded curves) and continuous (no breaks).

A polynomial of degree \(n \) has at most \(n-1 \) turning points (graph changes direction).

Recall:

\[y = f(x) = c \hspace{2cm} \text{degree} = _____ \]
\[y = f(x) = mx + b \hspace{2cm} \text{degree} = _____ \]
\[y = f(x) = ax^2 + bx + c \hspace{2cm} \text{degree} = _____ \]
\[y = f(x) = ax^3 + bx^2 + cx + d \hspace{2cm} \text{degree} = _____ \]

Example 1: Determine which functions are polynomial functions. For those that are, identify the degree. For those that are not, explain why they are not polynomial functions.

(a) \(f(x) = 5x^2 + 3x^2 - 7 \) Yes No __

(b) \(g(x) = 10 \) Yes No __

(c) \(h(x) = x\sqrt{7} + \pi x^3 \) Yes No __

(d) \(f(x) = \frac{3x^2 + 5}{x} \) Yes No __

(e) \(g(x) = |x| \) Yes No __

(f) \(h(x) = \frac{3x^2 + 5}{2} \) Yes No __
End Behavior of a Polynomial (what happens to the graph of the function to the far left \((x \to -\infty)\) and far right \((x \to \infty)\)) and Leading Coefficient \((a_n)\) Test

<table>
<thead>
<tr>
<th>Degree (n) is Even</th>
<th>Degree (n) is Even</th>
<th>Degree (n) is Odd</th>
<th>Degree (n) is Odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_n > 0)</td>
<td>(a_n < 0)</td>
<td>(a_n > 0)</td>
<td>(a_n < 0)</td>
</tr>
</tbody>
</table>

Think: \(y = x^2\)
Think: \(y = -x^2\)
Think: \(y = x^3\)
Think: \(y = -x^3\)

Example 2: Without using a calculator, determine the end behavior of the following.

(a) \(f(x) = x^3 - x^2 - 1\)
(b) \(f(x) = -4x^4 - 3x^2 + 7\)
(c) \(f(x) = -5(x-3)^2(x+2)^3\)
(d) \(f(x) = -x^3 + 8x^4 + 4x^2 + 2\)

Relative Maximum/Minimum: The point(s) at which a function changes its increasing or decreasing behavior. These points are also called turning points.
A function is increasing if the \(y\) values increase on the graph of \(f\) from left to right.
A function is decreasing if the \(y\) values decrease on the graph of \(f\) from left to right.
A function is constant if the \(y\) values remain unchanged on the graph of \(f\) from left to right.

Example 3:

\[y = f(x)\]

\(f\) has a relative minimum(s) at _____________.
The relative minimum(s) of \(f\) are _____________.
\(f\) has a relative maximum(s) at _____________.
The relative maximum(s) \(f\) are _____________.

On which intervals is \(f\) increasing? ____________ decreasing? ____________ constant? ____________
Example 4: Use the following steps to graph $f(x) = x^4 - 4x^2$.

Steps for Graphing a Polynomial Function:

1. Use **Leading Coefficient Test** to determine End Behavior.
2. Find the x-intercept(s). Let $f(x) = 0$.
3. Find the y-intercept. Let $x = 0$.
4. Determine where the graph is above or below x-axis.
5. Plot a few points and draw a smooth, continuous graph.
6. Use # of **turning points** to check graph accuracy.

<table>
<thead>
<tr>
<th>Even Functions</th>
<th>Odd Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If $f(x) \neq f(-x)$ and $f(x) \neq -f(-x)$, then $f(x)$ is “**neither**” odd nor even.

Example 5: Determine whether each of the functions below is even, odd, or neither.

\[
\begin{align*}
 f(x) &= x^3 - 3x \quad \underline{\text{even}} \quad f(x) = x^4 - 2x^2 + 1 \quad \underline{\text{even}} \quad f(x) = x^3 - x^2 - 6x \quad \underline{\text{odd}}
\end{align*}
\]
Example 6: Refer to the graph below to answer/find the following:

(a) Is the graph a function? _______
(b) Is this a graph of a polynomial function? ____
(c) domain __________
(d) range __________
(e) $f(0) = __________$
(f) x-intercept(s) __________
(g) y-intercept(s) __________
(h) increasing (interval) __________
(i) decreasing (interval) __________
(j) constant (interval) __________
(k) For what value(s) of x does $f(x) = -5$? ______

Piecewise Function: A function that is defined by two (or more) equations over a specified domain.

Example 7: Graph $f(x) = \begin{cases}
-x, & x < 0 \\
x^2 - 3, & x \geq 0
\end{cases}$

Example 8: Graph $f(x) = \begin{cases}
1, & \text{if } x > 0 \\
0, & \text{if } x = 0 \\
-1, & \text{if } x < 0
\end{cases}$

Example 9: Given $f(x) = \begin{cases}
2x, & \text{if } x \geq 5 \\
x^2 - 3, & \text{if } x < 5
\end{cases}$, evaluate each of the following:

(a) $f(0) - f(5)$
(b) $5f(-3) - \left[f(6)\right]^2$
3.3 Homework Problems:

1. Determine which functions are polynomial functions.
 (a) \(f(x) = x^5 - \sqrt[3]{x^2} \)
 (b) \(g(x) = x^{-2} + 8x^{-1} - 9 \)
 (c) \(h(x) = 2.5x^3 - \pi x^2 + 2 \)
 (d) \(g(x) = 6x^7 + \frac{1}{x} \)
 (e) \(f(x) = x^{\frac{1}{2}} - 5 \)
 (f) \(h(x) = \frac{3x^3 + 2x^2}{x^3} \)

2. Use the Leading Coefficient Test to determine the end behavior of the graph of \(f \).
 (a) \(f(x) = -x^4 - x^2 \)
 (b) \(f(x) = 7x^3 - 4x^2 \)
 (c) \(f(x) = x^8 \)
 (d) \(f(x) = 9 - x^3 \)
 (e) \(f(x) = (x - 2)^2(x + 3)^3 \)
 (f) \(f(x) = -2x(x + 3)^2(x - 5) \)

3. Consider the graph of the function \(f(x) = x^4 - 9x^2 \).
 (a) Use Leading Coefficient Test to determine the end behavior of the function.
 (b) Find the \(x \)-intercept(s).
 (c) Find the \(y \)-intercept.
 (d) For what intervals is the graph above the \(x \)-axis?

4. Consider the graph of the function \(f(x) = 6x^2 + x^3 - x^4 \).
 (a) Use Leading Coefficient Test to determine the end behavior of the function.
 (b) Find the \(x \)-intercept(s).
 (c) Find the \(y \)-intercept.
 (d) For what intervals is the graph above the \(x \)-axis?

5. Determine whether each function is even, odd, or neither.
 (a) \(f(x) = x^4 + 5x^2 \)
 (b) \(g(x) = -5x^3 - 3x^2 + 7 \)
 (c) \(h(x) = x^5 + 2x^3 - x \)
 (d) \(g(x) = 5x^2 + 6 \)
 (e) \(f(x) = -3 \)
 (f) \(f(x) = x^3 - 1 \)
6. Refer to the graph of \(f \) below to determine each of the following:
 (Use interval notation whenever possible.)

 (a) the domain of \(f \)
 (b) the range of \(f \)
 (c) \(x \)-intercept(s)
 (d) \(y \)-intercept(s)
 (e) interval(s) on which \(f \) is increasing
 (f) interval(s) on which \(f \) is decreasing
 (g) values of \(x \) for which \(f(x) < 0 \)
 (h) number(s) at which \(f \) has a relative maximum
 (i) relative maximum of \(f \)
 (j) \(f(-2) \)
 (k) value(s) for which \(f(x) = 0 \)
 (l) values for which \(f(x) = 2 \)
 (m) Is \(f \) even, odd, or neither?

7. Given the piecewise function \(f(x) = \begin{cases}
 x & \text{if } x < 0 \\
 x^2 & \text{if } x \geq 0
\end{cases} \), evaluate the following:

 (a) \(f(0) \) (b) \(f(10) \) (c) \(f(-3) + f(5) \) (d) \(-3f(-1) \cdot f(2) \) (e) \(7 - f(-5) \)

8. Given the piecewise function \(f(x) = \begin{cases}
 0 & \text{if } x < -2 \\
 x + 2 & \text{if } -2 \leq x \leq 2 \\
 \sqrt{x} & \text{if } x > 2
\end{cases} \), evaluate the following:

 (a) \(f(-4) + f(0) + f(4) \) (b) \(3f(-2) - 5f(2) \) (c) \(2[f(9)]^2 \) (d) \(\frac{f(100) + f(1)}{13 + f(-10)} \)

3.3 Homework Answers: 1. (a) polynomial; (b) not a polynomial; (c) polynomial; (d) not a polynomial; (e) not a polynomial; (f) not a polynomial
 2. (a) falls right and left; (b) falls left and rises right; (c) rises right and left; (d) rises left and falls right; (e) left and rises right; (f) falls left and right
 3. (a) rises left and right; (b) -3, 0, 3; (c) 0; (d) \((-\infty, -3) \) and \((3, \infty) \)
 4. (a) falls left and right; (b) 0, 3, -2; (c) 0; (d) (-2, 0) and (0, 3)
 5. (a) even; (b) neither; (c) odd; (d) even; (e) even; (f) neither
 6. (a) [-7, 6]; (b) [-2, 5]; (c) -6; (d) 2; (e) (-7, -4) and (0, 6); (f) (-4, 0); (g) [-7, -6]; (h) \(x = -4 \); (i) 4; (j) 3; (k) \(x = -6 \); (l) \(x = -5, 0 \); (m) neither
 7. (a) 0; (b) 100; (c) 22; (d) 12; (e) 12
 8. (a) 4; (b) -20; (c) 18; (d) 1