4.1 Exponential Functions and Their Graphs

In this section you will learn to:
- evaluate exponential functions
- graph exponential functions
- use transformations to graph exponential functions
- use compound interest formulas

An exponential function \(f \) with base \(b \) is defined by
\[
 f(x) = b^x \quad \text{or} \quad y = b^x , \quad \text{where} \quad b > 0, \ b \neq 1, \ \text{and} \ x \ \text{is any real number.}
\]

Note: Any transformation of \(y = b^x \) is also an exponential function.

Example 1: Determine which functions are exponential functions. For those that are not, explain why they are not exponential functions.

(a) \(f(x) = 2^x + 7 \) \hspace{1cm} Yes No ______________________________
(b) \(g(x) = x^2 \) \hspace{1cm} Yes No ______________________________
(c) \(h(x) = 1^x \) \hspace{1cm} Yes No ______________________________
(d) \(f(x) = x^x \) \hspace{1cm} Yes No ______________________________
(e) \(h(x) = 3 \cdot 10^{-x} \) \hspace{1cm} Yes No ______________________________
(f) \(f(x) = -3^{x+1} + 5 \) \hspace{1cm} Yes No ______________________________
(g) \(g(x) = (-3)^{x+1} + 5 \) \hspace{1cm} Yes No ______________________________
(h) \(h(x) = 2x - 1 \) \hspace{1cm} Yes No ______________________________

Example 2: Graph each of the following and find the domain and range for each function.

(a) \(f(x) = 2^x \) \hspace{1cm} domain: __________
 \hspace{1cm} range: __________
(b) \(g(x) = \left(\frac{1}{2}\right)^x \) \hspace{1cm} domain: __________
 \hspace{1cm} range: __________
Characteristics of Exponential Functions \(f(x) = b^x \)

<table>
<thead>
<tr>
<th>(b > 1)</th>
<th>(0 < b < 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain:</td>
<td></td>
</tr>
<tr>
<td>Range:</td>
<td></td>
</tr>
</tbody>
</table>

Transformations of \(g(x) = b^x \) (\(c > 0 \)):
(Order of transformations is H S R V.)

- **Horizontal:**
 - \(g(x) = b^{x+c} \) (graph moves \(c \) units left)
 - \(g(x) = b^{x-c} \) (graph moves \(c \) units right)

- **Stretch/Shrink:**
 - (Vertical) \(g(x) = cb^x \) (graph stretches if \(c > 1 \))
 - (graph shrinks if \(0 < c < 1 \))

- **Stretch/Shrink:**
 - (Horizontal) \(g(x) = b^{-x} \) (graph shrinks if \(c > 1 \))
 - (graph stretches if \(0 < c < 1 \))

- **Reflection:**
 - \(g(x) = -b^x \) (graph reflects over the \(x\)-axis)
 - \(g(x) = b^{-x} \) (graph reflects over the \(y\)-axis)

- **Vertical:**
 - \(g(x) = b^x + c \) (graph moves up \(c \) units)
 - \(g(x) = b^x - c \) (graph moves down \(c \) units)
Example 3: Use \(f(x) = 2^x \) to obtain the graph \(g(x) = -2^{x+3} - 1 \).

Domain of \(g \): __________

Range of \(g \): __________

Equation of any asymptote(s) of \(g \): __________

\[f(x) = e^x \] is called the **natural exponential function**, where the irrational number \(e \) (approximately 2.718282) is called the **natural base**.

(The number \(e \) is defined as the value that \(\left(1 + \frac{1}{n}\right)^n \) approaches as \(n \) gets larger and larger.)

Example 4: Graph \(f(x) = e^x \), \(g(x) = e^{x-3} \), and \(h(x) = -e^x \) on the same set of axes.
<table>
<thead>
<tr>
<th>Periodic Interest Formula</th>
<th>Continuous Interest Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = P\left(1+\frac{r}{n}\right)^{nt}$</td>
<td>$A = Pe^{rt}$</td>
</tr>
</tbody>
</table>

$A =$ balance in the account (Amount after t years)

$P =$ principal (beginning amount in the account)

$r =$ annual interest rate (as a decimal)

$n =$ number of times interest is compounded per year

$t =$ time (in years)

Example 5: Find the accumulated value of a $5000 investment which is invested for 8 years at an interest rate of 12% compounded:

(a) annually

(b) semi-annually

(c) quarterly

(d) monthly

(e) continuously
4.1 Homework Problems

1. Use a calculator to find each value to four decimal places.
 (a) $5\sqrt[3]{3}$ (b) 7^π (c) $2^{-5.3}$ (d) e^2 (e) e^{-2} (f) $-e^{0.25}$ (g) π^{-1}

2. Simplify each expression without using a calculator. (Recall: $b^n \cdot b^m = b^{n+m}$ and $(b^m)^n = b^{mn}$)
 (a) $6\sqrt[3]{6\sqrt[3]{6}}$ (b) $(3\sqrt[3]{3})\sqrt[3]{3}$ (c) $b^{\sqrt[3]{3}}$ (d) $(5\sqrt[3]{3})\sqrt[3]{3}$ (e) $\frac{1}{4^{\frac{1}{4}}} \cdot \frac{1}{4^{\frac{1}{4}}}$ (f) $b^{\frac{1}{\sqrt[3]{b}}} \cdot b^{\frac{1}{\sqrt[3]{b}}}$

For Problems 3 – 14, graph each exponential function. State the domain and range for each along with the equation of any asymptotes. Check your graph using a graphing calculator.

3. $f(x) = 3^x$ 4. $f(x) = -(3^x)$ 5. $f(x) = 3^{-x}$ 6. $f(x) = \left(\frac{1}{3}\right)^x$

7. $f(x) = 2^x - 3$ 8. $f(x) = 2^{x-3}$ 9. $f(x) = 2^{x+5} - 5$ 10. $f(x) = -2^{-x}$

11. $f(x) = -2^{x+3} + 1$ 12. $f(x) = \left(\frac{1}{2}\right)^{x-3} - 4$ 13. $f(x) = e^{-x} + 2$ 14. $f(x) = -e^{x+2}$

15. $10,000$ is invested for 5 years at an interest rate of 5.5%. Find the accumulated value if the money is
 (a) compounded semiannually; (b) compounded quarterly; (c) compounded monthly; (d) compounded
 continuously.

16. Sam won $150,000$ in the Michigan lottery and decides to invest the money for retirement in 20
 years. Find the accumulated value for Sam’s retirement for each of his options:
 (a) a certificate of deposit paying 5.4% compounded yearly
 (b) a money market certificate paying 5.35% compounded semiannually
 (c) a bank account paying 5.25% compounded quarterly
 (d) a bond issue paying 5.2% compounded daily
 (e) a saving account paying 5.19% compounded continuously

4.1 Homework Answers: 1. (a) 16.2425; (b) 451.8079; (c) .0254; (d) 7.3891; (e) .1353; (f) -1.2840; (g) .3183
 2. (a) 36\sqrt[2]{2}; (b) 9; (c) b^4; (d) 125; (e) 4; (f) b^{\frac{1}{3}} \cdot \sqrt[3]{b} 3. Domain: $(-\infty, \infty)$; Range: $(0, \infty)$; $y = 0$
 4. Domain: $(-\infty, \infty)$; Range: $(-\infty, 0)$; $y = 0$ 5. Domain: $(-\infty, \infty)$; Range: $(0, \infty)$; $y = 0$
 6. Domain: $(-\infty, \infty)$; Range: $(0, \infty)$; $y = 0$ 7. Domain: $(-\infty, \infty)$; Range: $(-3, \infty)$; $y = -3$
 8. Domain: $(-\infty, \infty)$; Range: $(0, \infty)$; $y = 0$ 9. Domain: $(-\infty, \infty)$; Range: $(-5, \infty)$; $y = -5$
 10. Domain: $(-\infty, \infty)$; Range: $(-\infty, 0)$; $y = 0$ 11. Domain: $(-\infty, \infty)$; Range: $(-\infty, 1)$; $y = 1$
 12. Domain: $(-\infty, \infty)$; Range: $(-4, \infty)$; $y = -4$ 13. Domain: $(-\infty, \infty)$; Range: $(2, \infty)$; $y = 2$
 14. Domain: $(-\infty, \infty)$; Range: $(-\infty, 0)$; $y = 0$ 15. (a) $13,116.51$; (b) $13,140.67$; (c) $13,157.04$; (d) $13,165.31$ 16. (a) $429,440.97$; (b) $431,200.96$; (c) $425,729.59$; (d) $424,351.12$; (e) $423,534.64$

Page 5 (Section 4.1)