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The Plan

I Introduce the notion of a compact quantum group from an
operator algebraic perspective.

I Highlight some examples and illustrate some aspects of their
general theory.



Quantizing groups

I In operator algebras, we learn that unital C∗-algebras are the
right non-commutative notions of compact spaces.

I Compact groups are compact spaces with some extra
structure (continuous group law etc...)

I How do we get a non-commutative formulation of compact
groups?



Quantizing groups

I In operator algebras, we learn that unital C∗-algebras are the
right non-commutative notions of compact spaces.

I Compact groups are compact spaces with some extra
structure (continuous group law etc...)

I How do we get a non-commutative formulation of compact
groups?



Quantizing groups

I In operator algebras, we learn that unital C∗-algebras are the
right non-commutative notions of compact spaces.

I Compact groups are compact spaces with some extra
structure (continuous group law etc...)

I How do we get a non-commutative formulation of compact
groups?



Compact Quantum Groups

Definition (Woronowicz)

A compact quantum group (CQG) G is a pair (A,∆) where A is a
unital C∗-algebra and ∆ : A→ A⊗min A is a unital
∗-homomorphism satisfying

1. coassociativity property: (id⊗∆)∆ = (∆⊗ id)∆.
(Such a morphism ∆ called a comultiplication on A.)

2. cocancellation property:

span{∆(A)(1⊗A)} = A⊗min A = span{∆(A)(A⊗ 1)}

Why is this a “good” definition?

Proposition

If G = (A,∆) is a CQG with abelian A. Then ∃! compact group
G so that

1. A = C(G)

2. (∆f)(s, t) = f(st) (f ∈ C(G), s, t ∈ G).
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Sketch
Given G = (A,∆), (id⊗∆)∆ = (∆⊗ id)∆ + cocancellation.

I By Gelfand: If A is abelian, then A = C(G) for some unique
compact Hausdorff space G, moreover the morphism
∆ : C(G)→ C(G)⊗min C(G) ∼= C(G×G) comes from a
unique continuous map

m : G×G→ G; (s, t) 7→ st, ∆f(s, t) = (f◦m)(s, t) = f(st).

I By coassociativity:

[(id⊗∆)∆]f = [(∆⊗ id)∆]f (f ∈ C(G))

⇐⇒ f(r(st)) = f((rs)t) (f ∈ C(G), r, s, t ∈ G)

⇐⇒ m : G×G→ G is associative

⇐⇒ (G,m) is a compact semigroup.

I By cocancellation: G has left/right cancellation property:{
st = rt ∀t =⇒ s = r

}
&

{
ts = tr ∀t =⇒ s = r

}
Fact: Every cpt. cancellative semigroup is a compact group!
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Basic Examples of Compact Quantum Groups

Standard Notation: Given any CQG G = (A,∆), we typically
write A = C(G). Morally, we think of C(G) as the “C∗-algebra of
continuous functions on G”.

Example

Any compact group G gives a CQG: G = (C(G),∆) as above.

Example (Pontryagin duals of discrete groups)

Let Γ be a discrete group. Put A = C∗(Γ), and define

∆(γ) = γ ⊗ γ (γ ∈ Γ ⊂ C[Γ] ⊂ A).

Fact: ∆ linearly and continuously extends to a comultiplication
∆ : A→ A⊗min A with the cocancellation property.

=⇒ Get a CQG Γ̂ = (C∗(Γ),∆), the Pontryagin Dual of Γ.

Note: When Γ is abelian, Γ̂ is exactly the Pontryagin dual of Γ.
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q-deformed SU(2)
Here’s a first example that doesn’t come from groups: q-deformed
SU(2) quantum group.

I Fix q ∈ [−1, 1]\{0}.
I Define a universal C∗-algebra C(SUq(2)) with generators
α, γ ∈ C(SUq(2)) and relations making the matrix

u =

[
α −qγ∗
γ α∗

]
unitary in M2(C(SUq(2))) : u∗u = uu∗ = 1.

I C(SUq(2)) admits a comultiplication ∆ given by

∆(uij) =

2∑
k=1

uik ⊗ ukj , (uij = (i, j)th entry of u).

I (Woronowicz) Get a CQG SUq(2) = (C(SUq(2)),∆),
“q-deformed SU(2)”.
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q-deformed SU(2), continued...

C(SUq(2)) = C∗
(
α, γ

∣∣∣ u = [uij ] =

[
α −qγ∗
γ α∗

]
unitary

)
∆(uij) =

∑
k

uik ⊗ ukj

I When q = 1, C(SU1(2)) = C(SU(2)). In fact, the generators
{uij}2i,j=1 = {α, γ} can be identified with the standard
coordinate functions on SU(2), and ∆ comes from the
“usual” group law:

∆(uij)(s, t) =
∑
k

(uik⊗ukj)(s, t) =
∑
k

uik(s)ukj(t) = uij(st).

I For q 6= 1, C(SUq(2)) is non-abelian, and we think of SUq(2)
as a non-commutative deformation of SU(2).

I The above q-deformation procedure SU(2) 7→ SUq(2) is a
special case of the very general Drinfeld-Jimbo q-deformations
G 7→ Gq (q ∈ (0, 1], G cpt. simply conn. s.-simple Lie gp).
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Generalizing SUq(2): Compact matrix quantum groups
The construction of SUq(2) as a “non-commutative version of
C(SU(2))” can be formalized in the language of compact matrix
quantum groups.

Given a compact matrix group G ⊂ GLn(C), we have

I the n2 coordinate functions {uij}1≤i,j≤n ∈ C(G).
uij(g) = (i, j)th entry of g ∈ G ⊂Mn(C).

I the matrix u = [uij ] ∈Mn(C(G)) is invertible. This is just
the fundamental/defining representation of G.

I By Stone-Wierstrass, C(G) is generated as a C∗-algebra by
the uij ’s.

I The comultiplication
∆ : C(G)→ C(G×G); ∆f(s, t) = f(st) is determined by

∆(uij) =
∑
k

uik ⊗ ukj .

I (For free): The conjugate matrix
ū = [uij ] = [u∗ij ] ∈Mn(C(G)) is invertible. (It’s the
conjugate of the representation u!)
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Compact matrix quantum groups

Definition
A compact matrix quantum group (CMQG) is a pair (A, u), where
A is a unital C∗-algebra and u = [uij ] ∈Mn(A) satisfies:

1. u is invertible in Mn(A).

2. A is generated as a C∗-algebra by the entries of u.

3. There exists a unital ∗-homomorphism ∆ : A→ A⊗min A
given by

∆(uij) =
∑
k

uik ⊗ ukj .

4. The conjugate matrix ū := [u∗ij ] is invertible in Mn(A).

Theorem (Woronowicz)

Every CMQG (A,∆) is a CQG with coproduct ∆.

Upshot: Gives a practical way to construct CQGs using mainly
“algebraic” generators and relations data.



Compact matrix quantum groups

Definition
A compact matrix quantum group (CMQG) is a pair (A, u), where
A is a unital C∗-algebra and u = [uij ] ∈Mn(A) satisfies:

1. u is invertible in Mn(A).

2. A is generated as a C∗-algebra by the entries of u.

3. There exists a unital ∗-homomorphism ∆ : A→ A⊗min A
given by

∆(uij) =
∑
k

uik ⊗ ukj .
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Liberations of Matrix Lie Groups

Using the CMQG formalism, we can define “free versions” of the
classical matrix Lie groups like G = Un, On, Sn, ....

Basic strategy:

1. Take the coordinates uij ∈ C(G).

2. They satisfy some algebraic relations RG comming from G,
which includes commutation.

3. “Liberate” G by throwing away the commutation relation.
Define

C(G+) = C∗
(
uij , 1 ≤ i, j ≤ n

∣∣ RG\{commutation})

4. In nice situations, get a new CMQG G+ = (C(G+), u), called
the free version of G.

In short, we want to “Liberate���
��XXXXXMichigan! matrix Lie groups!”
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2. They satisfy some algebraic relations RG comming from G,
which includes commutation.

3. “Liberate” G by throwing away the commutation relation.
Define

C(G+) = C∗
(
uij , 1 ≤ i, j ≤ n

∣∣ RG\{commutation})

4. In nice situations, get a new CMQG G+ = (C(G+), u), called
the free version of G.

In short, we want to “Liberate���
��XXXXXMichigan! matrix Lie groups!”



The free unitary quantum group U+
n

Let n ≥ 2 and let C(U+
n ) be the universal C∗-algebra with

generators {uij}1≤i,j≤n with the relations

u = [uij ] ∈Mn(C(U+
n )) & ū = [u∗ij ] ∈Mn(C(U+

n )) are unitary.

I C(U+
n ) is the free version of C(Un): C(Un) is the

abelianization of C(U+
n ).

I The formula
∆uij =

∑
k

uik ⊗ ukj

defines a comultiplication ∆ : C(U+
n )→ C(U+

n )⊗min C(U+
n ).

Stetch:

u & ū unitary =⇒ [
∑
k

uik ⊗ ukj ] & [
∑
k

u∗ik ⊗ u∗kj ] unitary

=⇒ ∆ well-defined by universality!.

U+
n = (C(U+

n ), u) is a CMQG, the free unitary quantum group.
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Aside: U+
n vs. Brown’s Algebras

There is a related (older) liberation of the unitary groups Un, due
to L. Brown: Define

Bn = C∗
(
uij , 1 ≤ i, j ≤ n

∣∣ u = [uij ] ∈Mn(Bn) is unitary
)
.

I So C(U+
n ) is a quotient of Bn by the relation “ū is unitary”.

I Bn has a comultiplication ∆ : Bn → Bn ⊗min Bn given by

∆uij =
∑
k

uik ⊗ ukj .

I Is (Bn, u,∆) a compact matrix quantum group?

Answer: No! For Bn, ū is not invertible. (Exercise: Try to find
explicit unitaries u ∈Mn(B(H)) such that ū is not invertible).



Free orthogonal and permutation quantum groups

We can play the same game as for Un to get liberations of the
orthogonal groups and permutation groups:

Define

C(O+
n ) = C∗

(
vij , 1 ≤ i, j ≤ n

∣∣ v = [vij ] is unitary &v∗ij = vij

)
C(S+

n ) = C∗
(
pij , 1 ≤ i, j ≤ n

∣∣ p = [pij ] is unitary &p2
ij = pij = p∗ij

)
.

These algebras admit comultiplications
∆ : C(G+)→ C(G+)⊗min C(G+) given by

∆(xij) =
∑
k

xik ⊗ xkj (x ∈ {v, p}).

Get two new CMQGs: The free orthogonal quantum groups O+
n

and the free permutation quantum groups S+
n .



The Haar State
Recall: Every compact group G admits a unique
translation-invariant Borel probability measure µ, called the Haar
measure:∫
G
f(st)dµ(t) =

∫
G
f(ts)dµ(t) =

∫
G
f(t)dµ(t) (f ∈ C(G), s ∈ G).

Equivalently, if h : C(G)→ C, h(f) =
∫
G fdµ is the corresponding

state, then

(id⊗ h)∆(f) = (h⊗ id)∆(f) = h(f)1 (f ∈ C(G)).

Definition
A Haar state on a CQG G = (C(G),∆) is a state h : C(G)→ C
satisfying

(id⊗ h)∆(x) = (h⊗ id)∆(x) = h(x)1 (x ∈ C(G)).

Example: On a group dual Γ̂ = (C∗(Γ),∆), the Haar state is
given by the canonical group trace h(γ) = τΓ(γ) = δγ,e. (Check!)



Existence and Uniqueness of Haar State

Theorem (Woronowicz)

Every CQG G admits a unique Haar state h. (which could be
non-tracial or non-faithful).

Sketch:
I Given linear functionals ϕ,ψ ∈ C(G)∗, define their

convolution product ϕ ? ψ ∈ C(G)∗ by

ϕ ? ψ = (ϕ⊗ ψ)∆.

Coassociativity of ∆ makes (C(G)∗, ?) into a Banach
algebra, and the state space S(C(G)) is a subsemigroup.

I h ∈ S(C(G)) is a Haar state if and only if

ϕ ? h = h ? ϕ = h ϕ ∈ S(C(G)).

I Start with any faithful state ψ ∈ S(C(G)), consider the
weak∗-limit

h := lim
n→∞

1

n

n∑
k=1

ψ?k ∈ S(C(G)) =⇒ h is a Haar state!.



Application: Quantum Group Operator Algebras
Using the Haar state, we can form analogues of our favorite group
operator algebras:
I Do the GNS construction: Let L2(G) = L2(C(G), h) and
λ : C(G)→ B(L2(G)) be the associated “left-regular
representation”.

I Get the reduced C∗-algebra of G:

Cr(G) := λ(C(G)) ⊆ B(L2(G)).

I Get the von Neumann algebra of G:

L∞(G) = λ(C(G))′′ ⊆ B(L2(G)).

I One can also construct a universal C∗-algebra of G, Cu(G): If
G = (C(G), u = [uij ]) is a CMQG, put

O(G) = ∗ − alg
(
uij , 1 ≤ i, j ≤ n

)
.

Fact: Haar state h is always faithful on O(G). Then define

Cu(G) = C∗univ.(O(G)).



Application: Quantum Group Operator Algebras
The algebras Cu(G), Cr(G) and L∞(G) simultaneously generalize

1. The algebras of multiplication operators
C(G), L∞(G) ⊆ B(L2(G)) on compact groups G.

2. The discrete group operator algebras C∗(Γ), C∗r (Γ), LΓ.

Can even generalize the notion of amenability:

Definition
A CQG G is coamenable iff the canonical quotient map
Cu(G)→ Cr(G) is injective.

I Coamebility =⇒ Cr(G) nuclear, L∞(G) injective.
I SUq(2) is coamenable.
I Liberations G+ of matrix Lie groups are generally not

coamenable. =⇒ Cr(G
+), L∞(G+) are interesting!

Examples (Many hands)

L∞(U+
2 ) ∼= L(F2). L∞(G+) is a full, strongly solid, weakly

amenable, A-T-menable II1-factor. Cr(G
+) is simple with unique

trace, ... (for G+ = U+
n , O

+
n , S

+
n ).



Other Applications, briefly

Compact quantum groups can be used for many other
non-commutative purposes:

1. L∞(G) can be regarded as a non-commutative probability
space with respect to the Haar state (See Ian’s talk).

2. CQGs can be made to act on various mathematical
structures: graphs, metric spaces, OAs, subfactors.

3. CQG’s often appear as symmetries in quantum information
theory, free probability etc.

4. CQG’s have a rich representation theory - give rise to many
interesting examples of rigid C∗-tensor categories (see
Corey’s talk. )

Thanks!
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