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The C*-game

Input → C ∗-algebra → K -theory

Input C ∗-algebra K -theory

A compact Hausdorff space, X C (X ) K∗(C (X ))
A group, G C ∗(G ) K∗(C

∗(G ))
An action of G on X C (X ) o G K∗(C (X ) o G )

Remarks:

1 Going from a C ∗-algebra to its K -theory is not a technical issue but it
almost certainly a computational issue (see Mark Tomforde’s talk).

2 Going from an input to a C ∗-algebra is a technical issue (e.g., given
an input how do we construct a C ∗-algebra, in the second line should
we take the reduced or full group C ∗-algebra?).
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Input to C ∗-algebra

Big Picture: Our approach will be based on the fact that many classes of
inputs naturally lead to groupoids and will discuss a method for
constructing C ∗-algebras from (certain) groupoids.

More concrete plan: We will play the C ∗-game when the input is an
equivalence relation.
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Equivalence relations

Let ∼ denote an equivalence relation on a nonempty set X , so that

1 for each x ∈ X , x ∼ x ;

2 if x ∼ y , then y ∼ x ;

3 if x ∼ y and y ∼ z , then x ∼ z .

The equivalence class of x is denote by [x ] and is the set

{y ∈ X | x ∼ y}.

We view an equivalence relation as a subset of X × X via

R = {(x , y) ∈ X × X | x ∼ y}

X/ ∼= { [x ] | x ∈ X}
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Examples when X is a finite set

Consider the following equivalence relations:

Let X1 = {x1, x2} and R1 = {(x1, x1), (x1, x2), (x2, x1), (x2, x2)}.

Let X2 = {x1, x2, x3, x4} and R2 be the equivalence relation with all
elements equivalent to each other.

Let X3 = {x1, x2, x3, x4} and R3 be the equivalence relation generated by
x1 ∼ x2 and x3 ∼ x4.

Let X4 = {x1, x2} and R4 = {(x1, x1), (x2, x2)}.
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Making a C ∗-algebra from R : First Attempt

First attempt at making a C ∗-algebra:

For each Ri we have that Xi/ ∼i is a compact, Hausdorff space so we can
consider C (Xi/ ∼i ).

Why is this not a great choice?

It forgets a lot of information about the input. For example,

C (X1/ ∼1) = C (X2/ ∼2) ∼= C

Likewise C (X3/ ∼3) and C (X4/ ∼4) are the same.
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Making a C ∗-algebra from R : Second Attempt

Given a finite set X and an equivalence relation R ⊂ X × X , we let

C ∗(R) = {f : R → C}

with

(λ · f )(x , y) = λf (x , y)

(f + g)(x , y) = f (x , y) + g(x , y)
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The star operation when X is finite

Define (f ∗)(x , y) = f (y , x).

Exercise: Prove that the star operation is well-defined.

Exercise: Would it be well-defined if R was an arbitrary subset of X × X
rather than an equivalence relation?
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Multiplication in C ∗(R) when X is finite

The convolution product on C ∗(R) is defined via

(f ∗ g)(x , y) =
∑
z∼x

f (x , z)g(z , y)

Exercise: Prove that ∗ is well-defined. Would it be well-defined if R was
an arbitrary subset of X × X rather than an equivalence relation?

Exercise: Prove C ∗(R) is a ∗-algebra.

Somewhat involved exercise: Define a norm on C ∗(R) (still with X finite)
so that it becomes a C ∗-algebra. (Hint: the examples on the next slide
should be helpful).
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Examples

Back to R1, which was defined by taking X1 = {x1, x2} and

R1 = {(x1, x1), (x1, x2), (x2, x1), (x2, x2)}

and
C ∗(R1) = {f : R1 → C}

As a vector space C ∗(R1) is four dimensional; it has basis:

fij(xl , xm) =

{
1 l = i and m = j
0 otherwise

where 1 ≤ i ≤ 2 and 1 ≤ j ≤ 2.
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Examples

Exercise: Prove that C ∗(R1) ∼= M2(C) as ∗-algebras via the map defined
on the above basis by

f11 7→
[

1 0
0 0

]
, f12 7→

[
0 1
0 0

]
, f21 7→

[
0 0
1 0

]
, f22 7→

[
0 0
0 1

]
Exercise: Proved that C ∗(R2) ∼= M4(C), C ∗(R3) ∼= M2(C)⊕M2(C) and
C ∗(R4) ∼= C2.
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The C*-game in this case

Definition

A C ∗-algebra A is finite dimensional if it is finite dimensional as a vector
space.

Theorem

If X a finite nonempty set and R ⊆ X × X is an equivalence relation, then
C ∗(R) is finite dimensional.

Theorem

If A is a C ∗-algebra that is finite dimensional, then there exists X finite
and an equivalence relation R ⊆ X × X such that A ∼= C ∗(R).

Exercise: (Still with X finite) compute the K -theory of C ∗(R) in terms of
the equivalence relation R.
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Generalizing to the case when X is infinite

To generalize to the case when X is infinite, we need more structure on R.

One can work more generally but we will assume R is a locally compact,
Hausdorff space.

Let r : R → X be defined via (x , y) 7→ x and s : R → X be defined via
(x , y) 7→ y .

Definition

A topological equivalence relation R is an equivalence relation over X with
a locally compact Hausdorff topology such that

(x , y) 7→ (y , x) and ((x , y), (y , z)) 7→ (x , z)

are continuous. This implies that r and s are both continuous (see the
next slide).
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Important Remark

The topology on R determines the topology on X (rather than the
opposite). How?

Using the identification of sets: X ∼= {(x , x) | x ∈ X} ⊆ R.

Based on this, r is more correctly defined as r : R → R via

(x , y) 7→ (x , x)

Exercise: Based on the definition of r , define s.

Exercise: Prove that r and s are continuous.
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Étale equivalence relations

Definition

A topological equivalence relation R is étale if r and s are local
homeomorphisms.

Theorem

If R is étale, then for each x ∈ X

{(x , y) | y ∼ x} and {(y , x) | y ∼ x}

are discrete subsets of R.
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Examples

1 If X is nonempty and finite, then any equivalence relation R on X is
étale.

2 Suppose π : X → Y is a local homeomorphism and

Rπ := {(x1, x2) ∈ X × X | π(x1) = π(x2)}.

Then Rπ ⊆ X × X is étale.

3 As specific case of the previous example, take π : R→ S1 the
standard covering map.

Exercise: What is missing from the above examples to make the
statements “is étale” precise?
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An example from dynamical systems

Definition

A dynamical system is a pair (X , ϕ) where X is a compact Hausdorff space
and ϕ : X → X is a homeomorphism.

We say that (X , ϕ) is free if the following property holds: ϕn(x) = x for
some x ∈ X if and only if n = 0.

Definition

Suppose (X , ϕ) is free. Define

Rorbit = {(x1, x2) ∈ X × X | ϕn(x1) = x2 for some n ∈ Z}

Exercise: Prove Rorbit is an equivalence relation.
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Étale topology on Rorbit

Using the assumption that (X , ϕ) is free, we can (as sets) identify Rorbit

with X × Z via

(x , n) ∈ X × Z 7→ (ϕn(x), x) ∈ Rorbit .

Since X × Z has a natural topology this gives Rorbit a topology.

Facts:

1 The original topology on X agrees with the topology on
X × {0} ⊆ X × Z.

2 X is compact but Rorbit is not compact.

3 The topology on Rorbit is not the subspace topology from
Rorbit ⊆ X × X .

4 Using the topology above, Rorbit is étale (but with the subspace
topology is not).
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Example of an equivalence relation that is not étale

Example

Let X = [0, 1] and define an equivalence relation

R = {(x , x) | x ∈ X} ∪ {(0, 1), (1, 0)}.

where we give R ⊆ X × X the subspace topology.

Exercise: Prove that for each x ∈ X

{(x , y) | (x , y) ∈ R} and {(y , x) | (y , x) ∈ R}

are finite (and hence discrete) subsets of R.

Exercise: Prove that R is not étale.
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Functions of compact support

Suppose R is a locally compact Hausdorff étale equivalence relation. Let

Cc(R) = {f : R → C | f is continuous and has compact support}

We have the following algebraic operations:

(λ · f )(x , y) = λf (x , y)

(f + g)(x , y) = f (x , y) + g(x , y)

(f ∗)(x , y) = f (y , x)

(f ∗ g)(x , y) =
∑
z∼x

f (x , z)g(z , y)

Very involved exercise: Prove that the convolution product is well-defined.
Exercise: Prove that the convolution product is not well-defined for the
non-étale equivalence relation from the previous slide.
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C ∗-algebras associated to an étale equivalence relation

Plan: Complete Cc(R) to get a C ∗-algebra.

The issue is what norm should we complete with respect to?

There is no canonical choice.

In general, given a faithful representation φ : Cc(R)→ B(H), we can form

C ∗φ(R) := Cc(R)
||·||

where || · || is the operator norm in B(H).

We will discuss representations in more detail later in the talk.

If (X , ϕ) is free, then C ∗(Rorbit) ∼= C (X ) o Z.
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An explicit example

Take X = {0, 1}N with the product topology (X is the Cantor set) and ϕ
the odometer homeomorphism (i.e., ϕ acts via add one to the first
coordinate and then carry over). That is,

ϕ(0, x1, x2, . . .) = (1, x1, x2, . . .)

ϕ(1, 0, x2, . . .) = (0, 1, x2, . . .)

ϕ(1, 1, 0, x3, . . .) = (0, 0, 1, x3, . . .)

and
ϕ(1, 1, 1, . . .) = (0, 0, 0, . . .)

Goal: Understand the orbit relation and the C ∗-algebra associated
to the orbit relation for this dynamical system.
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Example of an orbit

The orbit of x ∈ X is the set

{y ∈ X | y = ϕn(x) for some n ∈ Z}

By the definition of the orbit relation, [x ]orbit is exactly the orbit of x .

For example, when x = (0, 1, 0, 1, 0, . . .), we have

ϕ(x) = (1, 1, 0, 1, 0, . . .)

ϕ2(x) = (0, 0, 1, 1, 0, . . .)

ϕ−1(x) = (1, 0, 0, 1, 0, . . .)

Robin Deeley (CU Boulder) Groupoid C*-algebras July 16 2020 23 / 41



Another relation on X

Recall that X = {0, 1}N with the product topology.

Definition

We say that x = (x0, x1, x2, . . .) and y = (y0, y1, y2, . . .) are tail equivalent
and write

x ∼tail y

if there exists N ∈ N such that xi = yi for all i ≥ N.

Q: Is orbit equivalence relation from the odometer action the same as the
tail equivalence relation?

A: Not quite

(1, 1, 1, . . .) ∼orbit (0, 0, 0, . . .) (since ϕ(1, 1, 1, . . .) = (0, 0, 0, . . .)) but
(1, 1, 1, . . .) 6∼tail (0, 0, 0, . . .)
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Rtail vs Rorbit

The relationship between these two equivalence relations is the following:

1 If x ∈ X and x 6∼orbit (0, 0, 0, . . .), then

[x ]tail = [x ]orbit

2 The orbit of (0, 0, 0, . . .) has been broken into its forward and
backward parts:

[(1, 1, 1, . . .)]tail ∪ [(0, 0, 0, . . .)]tail = [(0, 0, 0, . . .)]orbit

3 Rtail ⊆ Rorbit as an open subrelation.

Exercise: Prove that if R̂ is an open subrelation of R and R is étale, then
R̂ (with the subspace topology) is also étale.
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C ∗(Rtail) vs C ∗(Rorbit)

Define ι : Cc(Rtail)→ Cc(Rorbit) by

ι(f )(x1, x2) =

{
f (x1, x2) (x1, x2) ∈ Rtail

0 (x1, x2) 6∈ Rtail

Fact: ι can be extended to a ∗-homomorphism C ∗(Rtail)→ C ∗(Rorbit).

Exercise: Prove that C ∗(Rtail)→ C ∗(Rorbit) is injective (so that we can
view C ∗(Rtail) as a subalgebra of C ∗(Rorbit)).

Fact: C ∗(Rtail) is a large subalgebra of C ∗(Rorbit) ∼= C (X ) oZ. (see Dawn
Archey’s talk)
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The structure of C ∗(Rtail)

C ∗(Rtail) is the CAR algebra!

Outline of the ideas of the proof:

Define C→ C ∗(Rtail) via λ 7→ λI where I ∈ Cc(Rtail) is defined by

I (x , x̂) =

{
1 x = x̂
0 otherwise

Exercise: Prove that C→ C ∗(Rtail) is a well-defined injective
∗-homomorphism.

Next we want to define M2(C)→ C ∗(Rtail).

Robin Deeley (CU Boulder) Groupoid C*-algebras July 16 2020 27 / 41



The map: M2(C)→ C ∗(Rtail)

For i , j ∈ {0, 1} define

Eij = {(x , x̂) | π0(x) = i , π0(x̂) = j and for k > 0, πk(x) = πk(x̂)}

where πk : {0, 1}N → {0, 1} is the projection onto the k-coordinate.

For example

((0, 1, 1, . . .), (1, 1, 1, . . .)) ∈ E01

((0, 1, 1, . . .), (0, 1, 1, . . .)) 6∈ E01

((0, 1, 1, . . .), (1, 0, 0, . . .)) 6∈ E01

((0, 1, 0, . . .), (1, 0, 0, . . .)) ∈ E01

((0, 1, 0, 1, 0, . . .), (1, 1, 0, 1, 0, . . .)) ∈ E01

Note: One of these ordered pairs is not even in Rtail .
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The map: M2(C)→ C ∗(Rtail)

Eij = {(x , x̂) | π0(x) = i , π0(x̂) = j and for k > 0, πk(x) = πk(x̂)} where
πk : {0, 1}N → {0, 1} is the projection onto the k-coordinate.

Define M2(C)→ C ∗(Rtail) via[
a b
c d

]
7→ aχ00 + bχ01 + cχ10 + dχ11

where χij : Rtail → C is defined via

χij(x , x̂) =

{
1 (x , x̂) ∈ Eij

0 otherwise

Exercise: Prove that M2(C)→ C ∗(Rtail) is a well-defined injective
∗-homomorphism.
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The structure of C ∗(Rtail)

Exercise: How are the maps C→ C ∗(Rtail) and M2(C)→ C ∗(Rtail)
related? (Hint: What is χ00 + χ11?)

Involved exercise: For each n ∈ N, define the relevant injective
∗-homomorphism M2n(C)→ C ∗(Rtail).

Very involved exercise: Prove that ∪n∈NM2n(C) is dense in C ∗(Rtail).

Exercise: Is ∪n∈NM2n(C) = Cc(Rtail)?

Summary: Using the fact that C ∗(Rtail) is large inside C ∗(Rorbit) reduces
many questions about C ∗(Rorbit) to C ∗(Rtail) and we know “everything”
about C ∗(Rtail) because it is the CAR algebra.
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What is a groupoid?

Definition

A groupoid is a nonempty set G with the following additional structure:

1 a fixed subset of G × G denoted by G2;

2 a map G2 → G denoted by (g , h) 7→ gh;

3 an involution G → G denoted by g 7→ g−1.

such that

1 if g , h and k are in G with (g , h), (h, k) both in G2, then (gh, k).
(g , hk) are both in G2 and (gh)k = g(hk) (so that we can simply
write ghk);

2 for each g ∈ G, both (g , g−1) and (g−1, g) are in G2 and moreover if
(g , h) ∈ G2, then g−1gh = h and if (h, g) ∈ G2, then hgg−1 = h.

Robin Deeley (CU Boulder) Groupoid C*-algebras July 16 2020 31 / 41



An equivalence relation is a groupoid

Let X be a nonempty set and R ⊆ X × X be an equivalence relation. We
take

1 G = R;

2 G2 = {((x , y), (a, z)) ∈ R × R | y = a};
3 G2 → G defined via ((x , y), (y , z)) 7→ (x , z);

4 G → G defined via (x , y) 7→ (y , x).

Exercise: Prove that the above defines a groupoid.
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More structure

Definition

Let G be a groupoid. The set of units of G is

G0 = {g−1g | g ∈ G}

Define the range map, r : G → G(0) via g 7→ gg−1 and the source map,
s : G → G(0) via g 7→ g−1g .
For the groupoid associated to an equivalence relation, we have

G0 = {(y , x)(x , y) | (x , y) ∈ G} = {(y , y) | y ∈ X} ∼= X

Moreover,
r(x , y) = (x , y)(y , x) = (x , x)

and
s(x , y) = (y , x)(x , y) = (y , y)
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More examples

Example

Given a nonempty set X , we can define a groupoid by taking

1 G = X ,

2 G2 = {((x1, x2) ∈ X × X | x1 = x2},
3 G2 → G defined via (x , x) 7→ x and

4 G → G defined via x 7→ x .

Exercise: How are the constructions of a groupoid from a set and an
equivalence relation related? (Hint: One is a special case of the other).

Exercise: What is G0 in this case?
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More examples

Example

Given a group G , we can define a groupoid by taking

1 G = G ,

2 G2 = G × G ,

3 G2 → G defined by group multiplication and

4 G → G defined by taking the inverse.

Exercise: What is G0 in this case?
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Topological groupoids

Definition

A topological groupoid is a groupoid with a (locally compact, Hausdorff)
topology on G such that

1 G2 is given the subspace topology from G × G;

2 G2 is closed;

3 G2 → G is continuous;

4 G → G is continuous.

Examples? Same as above but with topologies, so topological spaces
(rather than sets), topological groups (note: discrete groups are
topological groups), and topological equivalence relations.

Exercise: Prove that given a topological groupoid the range and source
maps are continuous.
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Étale groupoids

Definition

A topological groupoid is étale if r and s are local homeomorphisms.

Example

The groupoid associated to a topological group, G , is étale if and only if
G is discrete.

Example

If X is a locally compact and Hausdorff space, then the associated
groupoid is étale.
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Functions of compact support

Suppose that G is a locally compact, Hausdorff, étale groupoid. Let

Cc(G) = {a : G → C | a is continuous and has compact support}.

Algebraic operations:

(λ · a)(g) = λa(g)

(a + b)(g) = a(g) + b(g)

(a∗)(g) = a(g−1)

(a ∗ b)(g) =
∑

r(h)=r(g)

a(h)b(h−1g)
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Defining representations

Theorem

Let u be a unit in a locally compact, Hausdorff étale groupoid G (i.e.,
u ∈ G0). For each a ∈ Cc(G ) and ξ ∈ `2(s−1(u)) the expression

(πuλ(a)ξ)(g) =
∑

r(h)=r(g)

a(h)ξ(h−1g)

defines an element in `2(s−1(u)). Moreover, πuλ(a) is in B(`2(s−1(u)))
with ||πuλ(a)|| bounded by a constant that is independent of u (it is does
depend on a), and πuλ : Cc(G → B(`2(s−1(u))) is a ∗-representation.
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The C ∗-algebra associated to a groupoid

Theorem

Suppose that G is a locally compact, Hausdorff, étale groupoid. Then

||a|| := sup{||π(a)|| | π a representation of Cc(G)}

and
||a||λ := sup{||πuλ(a)|| | u ∈ G0}

define (non-complete) C ∗-norms on Cc(G).

Definition

The full groupoid C*-algebra of G is C ∗(G) = Cc(G)
||·||

.

Definition

The reduced C*-algebra of G is C ∗λ(G) = Cc(G)
||·||λ

.
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What’s next?

For more, see

1 Ian Putnam’s lecture notes on C ∗-algebra (available on his website,
see Chapter 3);

2 Aidan Sims “Étale groupoids and their C ∗-algebras”
arXiv:1710.10897;

3 Karen Strung “An introduction to C ∗-algebras and the Classification
Programme” (available on her website, see Exercises 9.6.12 and
9.6.13 for more on the odometer action and its C ∗-algebra);

4 J.N. Renault “A groupoid approach to C ∗-algebras”.

Thank you!
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